Главная -> Книги

(0) (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16) (17) (18) (19) (20) (21) (22) (23) (24) (25) ( 26 ) (27) (28) (29) (30) (31) (32) (33) (34) (35) (36) (37) (38) (39) (40) (41) (42) (43) (44) (45) (46) (47) (48) (49) (50) (51) (52) (53) (54) (55) (56) (57) (58) (59) (26)

на какой-то определенной частоте (а значит, и на более высоких частотах) большая часть тока - скажем, 90% и более - будет замыкаться через С и лишь 10% через R.

Аналогично по-разному пропускает разные частоты и RL-фильтр. Существует множество более сложных фильтров, которые осуществляют более «строгое» разделение переменных токов разных частот.

ВОСПОМИНАНИЕ № 18. РЕЗОНАНС. Очень интересно ведет себя при изменении частоты цепь, в которую входя г и конденсатор С, и катушка Напряжения на этих элементах противофазны, так как ток в цепи общий. При этом Uc отстает от тока на 90°, а Ub опережает его, и тоже на 90°. Поэтому можно считать, что сопротивления хс и xl действуют друг против друга и общее реактивное сопротивление равно их разности.

нансной частоте «с точки зрения» генератора сопротивление последовательного контура равно Rk (обычно единицы ом), а параллельного контура - зкв (обычно десятки килоом).

ВОСПОМИНАНИЕ № 19. ДОБРОТНОСТЬ. Увеличение тока при резонансе будет тем более резким, чем меньше активное сопротивление в сравнении с реактивным сопротивлением

Xl и Хс. Величина, показывающая отношение -5- или

называется добротностью Q. Добротность иногда называют множителем вольтажа, так как она показывает, во сколько раз

1 4rD-L J I что Якочыь

ПОСЛЦОвЛСАЬИОЧ КоитVP



На какой-то частоте - назовем ее резонансной /рез - емкостное и индуктивное сопротивления окажутся равными. Они скомпенсируют друг друга, в цепи останется только активное сопротивление Rk. Из-за такого резкого уменьшения сопротивления резко возрастет ток, а вместе с ним возрастут напряжения на катушке и на конденсаторе.

Из условия Хс = xl легко вычислить резонансную частоту /рез. При отходе от резонансной частоты ток в цепи падает, так как общее сопротивление z растет (при увеличении частоты- за счет роста xl, а при уменьшении частоты - за счет роста хс). График, показывающий, насколько резко уменьшаются ток в цепи и напряжение на L и С при отходе от резонансной частоты, называется резонансной кривой. На резо-154

напряжение на катушке и на конденсаторе во время резонанса превышает напрянение на активном сопротивлении. Из отно-

шения -5- легко вывести, что добротность тем выше, чем

больше соотношение Увеличение Rk всегда приводит

к ухудшению добротности, а значит, к снижению резонансного тока, а также напряжения на катушке и конденсаторе и к притуплению резонансной кривой. Ухудшить добротность можно еще и иначе: подключив параллельно конденсатору (катушке) шунтирующее сопротивление. В данном случае все наоборот: чем меньше это шунтирующее сопротивление, тем сильнее «задавлен» контур, тем хуже его добротность.

ВОСПОМИНАНИЕ № 20. КОЛЕБАТЕЛЬНЫЙ КОНТУР. Явление резонанса, и, конечно, само название «резонанс», станет более понятным, если вспомнить, что цепь из конденсатора и катушки называется колебательным контуром, что в таком




контуре возникают собственные электромагнитные колебания всякий раз, когда мы передаем в него некоторое количество энергии (например, заряжаем конденсатор).

«Возникают колебания» означает, что конденсатор непрерывно обменивается энергией с катушкой - энергия электрического поля периодически переходит в энергию магнитного поля. Затем происходит обратный переход, и все повторяется сначала. При этом в цепи протекает переменный ток, частота которого зависит от индуктивности L и емкости С, подобно тому как частота собственных колебаний струны зависит ог ее массы и натяжения.

i 5300 \ C... zssooooo

\ к(я<р)

) </к(мгн) То(«ч)

Частота собственных колебаний fo контура равна его резонансной частоте /рез, и в этом заключен глубокий смысл. Резонанс наступает именно тогда, когда контур резонирует на частоту генератора, когда генератор действует в такт с собственными колебаниями в контуре.

Собственные колебания в контуре, если их не поддерживать, постепенно затухают, причем тем быстрее, чем больше потери энергии, чем ниже добротность Q контура.

Изменяя индуктивность и емкость контура, можно довольно просто менять частоту собственных колебаний и таким образом настраивать контур в резонанс на разные частоты. Так осуществляется настройка приемника на разные станции: переключением катушек переходят с одного диапазона на другой, а плавным изменением емкости производят настройку в пределах диапазона.

ВОСПОМИНАНИЕ № 21. ВНОСИМОЕ СОПРОТИВЛЕНИЕ. С помощью вспомогательной катушки связи Lcb можно отобрать из контура часть энергии и передать «для дальнейшего прохождения службы». На первый взгляд кажется, что чем ближе сдвинуты катушки и Lce, чем сильнее они свя-


й и й и о и Ои


1 о„ 1»-


заны общим магнитным полем, тем больше энергии мы получим от контура, тем большебудет напряжение Свых- В действительности же усиление связи между и Lce может дать и обратный эффект: после некоторого «рубежа» дальнейшее сближение катушек приводит к уменьшению Свых- Это связано с тем, что, бтбирая у контура энергию, мы как бы вносим в него сопротивление 7?вн. 157



Пока связь не очень сильная, это вносимое сопротивление играет второстепенную роль. Но по мере усиления связи роль эта становится все более значительной. Наконец дело доходит до того, что, сближая катушки, мы больше проигрываем от увеличения Rbh, чем выигрываем от увеличения доли получаемой из контура энергии.

При усилении связи во всех случаях ухудшается добротность контура и притупляется его резонансная кривая. Кроме того, несколько изменяется частота собственных колебаний fo (а значит, и резонансная частота), так как отбор энергии приводит к некоторому дополнительному сдвигу фаз между контурным током и напряжением. А это равносильно внесению в контур дополнительной емкости или индуктивности

Главное, что нужно помнить, углубляясь в Воспоминания,- это то, что их нужно хоть когда-нибудь закончить. Сейчас, по-видимому, и для нас настало время закончить путешествие по прекрасному прошлому и двинуться в не менее прекрасное будущее. А это будущее прежде всего предстанет перед нами в виде самого сложного и в то же время, пожалуй, самого важного этапа на пути к транзисторным схемам. Нам предстоит научиться строить и анализировать входные и выходные характеристики транзистора. И тот, кто преодолеет этот участок пути (пусть даже не сразу), может смело считать, что главные трудности (и главные неприятности!) нашего путешествия уже позади.

РИСУНКИ НА ВЕКА

Есть серьезные основания считать, что история человеческой культуры, история науки и искусства берет свое начало еще с того времени, когда люди жили в пещерах и с каменными топорами охотились на мамонтов. Может быть, именно тогда и появились первые ученые и художники - люди, которые пытались составить описание окружающего их мира. Конечно же, этот мир они описывали не словами: в те времена человек не то что азбуки не знал, но и разговаривать толком не умел. В его лексиконе были лишь считанные слова, больше похожие на крики животного, чем на разумную речь. Первые описания окружающего мира человек сделал в виде рисунков на стенах своей пещеры.

С техпор прошли многие тысячелетия... Навсегда исчезли с лица земли мамонты, навсегда заброшены каменные топоры. Из неудобных и сырых пещер человек переселился в много-158

этажные дома с горячим водоснабжением, а вместо звериных шкур стал носить нейлоновые рубашки. Он сочинил Большую энциклопедию, научился писать стихи, снимать любительские фильмы и легко выводить километровые формулы. Но, несмотря на все эти великие достижения, человек не забыл о самом древнем способе описания мира - не забыл о рисунке.

Сколько бы мы ни шутили по этому поводу, столь прочная привязанность к многочисленному семейству рисунка - к чертежам, графикам, карикатурам, картам, планам - связана со сложными и тонкими механизмами нашего мозга. Ве многих случаях мозг воспринимает графические описания намного легче и быстрее, чем словесные. Во многих случаях даже очень простой рисунок нельзя заменить пространным описанием, содержащим многие тысячи слов. К числу таких содержательных рисунков наверняка можно отнести и характеристики полупроводникового триода, которые нам сейчас предстоит построить н которые мы сохраним если не на века, то, во всяком случае, на все время знакомства с транзисторными усилителями.

Характеристики транзистора в принципе строятся так же, как и характеристики диода (рис. 19). Но только у диода нам пришлось строить одну характеристику - вольтамперную, на которой отображалось изменение одного тока под действием одного напряжения. Для того чтобы описать поведение транзистора, придется построить несколько характеристик. Они покажут изменение разных протекающих в транзисторе токов под действием разных приложенных к нему напряжений.

Начнем с входной характеристики. Она показывает, как меняется эмиттерный ток /э при изменении напряжения, приложенного к эмиттерному р/г-переходу, то есть при изменении напряжения иб между эмиттером и базой (рнс. 54, А). Эта характеристика почти ничем не отличается от прямой ветви вольтамперной характеристики диода, так как эмиттерный переход -это, по сути дела, и есть диод, включенный в прямом направлении.

У входной характеристики есть и обратная ветвь, соответствующая положительному (запирающему) напряжению на базе. Но эта ветвь нас не интересует, и мы вообще не будем обращать на нее внимания. Мы не будем учитывать влияния коллекторного напряжения jj на эмиттерный ток. Здесь мы, правда, несколько погрешим против истины, так как напряжение Обк все же влияет на эмиттерный ток. И об этом, в частности, говорит пунктирная линия - характеристика, которая получается при 6бк=10 в.



(0) (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16) (17) (18) (19) (20) (21) (22) (23) (24) (25) ( 26 ) (27) (28) (29) (30) (31) (32) (33) (34) (35) (36) (37) (38) (39) (40) (41) (42) (43) (44) (45) (46) (47) (48) (49) (50) (51) (52) (53) (54) (55) (56) (57) (58) (59)