Главная -> Книги

(0) (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16) (17) (18) (19) (20) (21) (22) (23) (24) (25) (26) (27) (28) (29) (30) (31) (32) (33) (34) (35) (36) ( 37 ) (38) (39) (40) (41) (42) (43) (44) (45) (46) (47) (48) (49) (50) (51) (52) (53) (54) (55) (56) (57) (58) (59) (37)

Освоившись с приемами, пусть самыми простыми, разделения и объединения цепей постоянного и переменного тока, мы сделали очень важный шаг в познании общих свойств, общих методов построения транзисторных усилителей. Очень важный шаг, но, к сожалению, еще не последний.

НАША ЦЕЛЬ-ОПТИМИЗАЦИЯ

Проблема, с которой приходится сталкиваться во всех без исключения транзисторных усилителях, и не только в транзисторных и даже не только в усилителях,- это проблема согласования генератора с нагрузкой. Здесь оба понятия - «генератор» и «нагрузка» - имеют самый широкий смысл. Генератор- это любое устройство, любая электрическая цепь, которая отдает энергию. Нагрузка - любое устройство, любая цепь, которая эту энергию потребляет. Генератором является, например, микрофон, а его нагрузкой - входная цепь транзистора, к которой этот микрофон подключен. Генератором является и выходная цепь транзистора, работающего на громкоговоритель или какую-либо другую нагрузку.

Количество энергии, которое генератор передает нагрузке, зависит не только от того, кто дает энергию, но и от того, кто ее берет. То, что генератор может в принципе отдать, например, 100 вт, еще совсем не означает, что нагрузка эти 100 вт сможет у него отобрать. И напряжение, которое генератор создаст на нагрузке, и ток в цепи, а поэтому и мощность, которую нагрузка получит от генератора,- все это зависит ог того, насколько они будут согласованы, а конкретно -от того, насколько согласованы собственные сопротивления Rg и Rp нагрузки и генератора.

Проблема согласования генератора с нагрузкой, согласования источника энергии с ее потребителем, имеет весьма общий и, если хотите, даже философский смысл. Рассказывая об этой проблеме, можно было бы привести немало интересных примеров из самых разных областей. Можно было бы. например, вспомнить, что мощность, которую развивает автомобильный двигатель, используется тем лучше, чем больше грузов везет автомобиль, но что перегружать машину бессмысленно. Можно было бы вспомнить и о том, что польза, которую приносит человек-работник, зависит не только от его сил и способностей, но еще и от подобранной работы. Слишком легкое дело и делать неинтересно, и толку от этого мало. Но в то же время вы вряд ли принесете пользу, взвалив на себя 220

работу не по плечу, взявшись за дело, в котором ничего не понимаете.

Важность согласования генератора с нагрузкой можно было бы показать и на других примерах, взятых из техники, экономики, политики, взятых из самой жизни. Но мы не будем уходить в столь далекие области и обсудим проблему согласования на более простом примере -на примере обычной электрической лампочки.

Если вы спросите у продавца электромагазина, чем отличается лампочка на 60 зт от лампочки на 40 вт, то он хотя и обидится за праздный вопрос, но все же ответит (такая уж у продавца работа): лампочки отличаются тем, что одна горит значительно ярче другой. Но давайте попробуем не удовлетвориться таким ответом, а выяснить, почему лампочка на 60 вт горит ярче, чем лампочка на 40 вт, по каким своим характеристикам отличаются лампочки. И пусть об этом отличии расскажут не слова «ярче» или «слабее», а цифры.

Прежде всего договоримся, что к обеим лампочкам во всех случаях жизни подводится одно и то же напряжение, скажем для круглого счета, 120 в. Ясно, что, для того чтобы при одинаковом напряжении отобрать из электрической сети разную мощность, нужно пропустить через лампочки разный ток. Из известного выражения для мощности нетрудно вывести и формулу для подсчета этого тока 1 = P:U (Воспоминание № 4).

Теперь подсчитаем, что через сорокаваттную лампочку идет ток около 0,33 а (40:120-0,33), а через шестидесятиваттную 0.5 а (60: 120=0,5). А то, что при одном и том же напряжении через лампочки идет разный ток, может означать только одно: лампочки имеют разное сопротивление. Выполнив простейший расчет по одной из формул закона Ома (R = U -.1), найдем, что сопротивление сорокаваттной лампочки около 360 ом (120:0,33-360), а сопротивление шестидесятиваттной лампочки 240 ом (120:0,5 = 240).

Итак, лампочки, отбирающие от источника энергии разную мощность, отличаются только сопротивлением: чем меньше сопротивление лампочки, тем больший ток по ней идет, тем большую мощность она отбирает от источника.

Не торопитесь, однако, на основании нашего примера делать общий вывод: «Чтобы повысить отбираемую от генератора мощность, надо уменьшать сопротивление нагрузки». Вывод этот будет справедлив лишь до некоторого предела. Если постепенно уменьшать сопротивление нагрузки, то неизбежно наступит момент, когда отбираемая ею у генератора мощность не только не будет расти, но даже, наоборот, начнет



уменьшаться. Чтобы понять, почему это происходит, придется вспомнить еще об одном герое, о кртором мы пока умалчивали,- о внутреннем сопротивлении генератора.

В нашем примере генератор - это электрическая сеть, внутреннее сопротивление которой очень мало: практически оно составляет десятые и даже сотые доли ома. Чтобы не путаться со столь малыми цифрами и не потерять суть дела среди всех вычислений, перенесем все события в некоторую условную электрическую цепь, где действует генератор с более удобными для вычислений показателями, например, с внутренним сопротивлением /?г = 2 ом и электродвижущей силой £=6 в. Подключая к этому генератору разную нагрузку - например, лампочки с разным сопротивлением,- будем вычислять ток в цепи, напряжение, которое достается нагрузке, и отбираемую ею от генератора мощность.

Результаты таких вычислений, сделанных для семи разных сопротивлений нагрузки, приведены на рис. 81, и по этим результатам можно сделать исключительно важный и общий для всех систем генератор - нагрузка вывод: генератор передает в нагрузку наибольшую мощность, когда ее сопротивление равно внутреннему сопротивлению генератора, то есть когда Яг = Ян- Такой режим принято называть оптимальным, то есть наивыгоднейшим, а сопротивление нагрузки, при котором получается этот наивыгоднейший режим,- оптимальным сопротивлением /?„ опт. Если сопротивление нагрузки сделать больше оптимального, то напряжение на ней возрастет, но уменьшится ток в цепи. При этом ток падает резче, чем растет напряжение, и в результате уменьшается мощность. Если сопротивление нагрузки сделать меньше оптимального, то ток в цепи возрастет, а напряжение на нагрузке упадет, и опять-таки в итоге уменьшается мощность на нагрузке.

Выбор сопротивления нагрузки зависит от того, что нужно потребителю: если, например, нужно большое напряжение, то следует включить Rh больше, чем Ra-om, мирясь при этом с уменьшением полученной от генератора мощности. Если, наоборот, нужен большой ток, то сопротивление Rn нужно брать поменьше и опять-таки знать, что при этом отбираемая нагрузкой мощность будет меньше, чем могла бы быть при оптимальной нагрузке. Если сопротивление генератора значительно больше, чем сопротивление нагрузки (RrRnjo говорят, что в цепи действует генератор тока. В этом случае ток в цепи мало зависит от Ra и при разных нагрузках оказывается примерно одинаковым, А если, наоборот, сопротивление генератора значительно меньше, чем сопротивление нагрузки (Rrk.Ra), ТО говорят, ЧТО В цбпи действубт генератор иапря-222


Рис 81 Напряжение на нагрузке, гок в цепи и отбираемая у генератора мощность зависят от того," как нагрузка согласована с генератором.

жения, потому что почти вся э. д. с. достается нагрузке и напряжение на ней мало зависит от самого Rn-

Чаще всего мы будем стремиться к оптимальному режиму, к тому, чтобы передать от генератора в нагрузку наибольшую мощность. А для этого нужно согласовать нагрузку с генератором, сделать так, чтобы их сопротивления и Rr были равны.

Но легко сказать «Добьемся согласования!», и не всегда легко его добиться. Особенно большие трудности возникают в транзисторном усилителе, где на каждом шагу встречаются в одной «упряжке» генератор и нагрузка с совершенно



разными характерами, с совершенно разными сопротивлениями Rh и /?г.Проблема согласования при этом становится чуть ли не самой важной, и от того, насколько успешно и насколько просто она решена, в огромной мере зависит решение главной задачи усиления сигнала. Сейчас мы познакомимся с несколькими типичными попытками примирения генератора с нагрузкой, попытками согласовать их сопротивления.

Если один транзистор не в состоянии обеспечить нужное усиление, то усилительные каскады соединяют, как говорят маленькие дети, «паровозиком» и усиливают сигнал в несколько этапов, передавая его, подобно эстафете, с одного каскада на другой.

Для простоты представим себе двухкаскадный усилитель (рис. 82), где сигнал передается из выходной цепи первого каскада во входную цепь второго каскада. Отвлекаясь от того, что происходит с сигналом до и после этого, можно считать выход первого каскада генератором сигнала, а вход второго каскада - нагрузкой. О том, насколько в данном случае велики трудности согласования, можно судить хотя бы по рис. 74, где в числе других данных указаны входные и выходные сопротивления разных усилительных схем. Вы видите, что для наиболее популярной схемы ОЭ выходное сопротивление Rsbix больше входного Rbx В дссятки и сотни раз. Еще хуже обстоит дело в схеме ОБ - здесь У?вых может быть больше, чем

Rbx чуть ЛИ НС В МИЛЛИОН раЗ.

Итак, входное сопротивление транзистора в наиболее распространенной схеме ОБ сильно отличается от выходного сопротивления-такова сама природа схемы. А это, в свою очередь, означает, что в многокаскадном усилителе из предыдущего каскада в последующий передается меньше энергии, чем при оптимальной связи между ними. Это, конечно, неприятно, но, как говорится, не смертельно. Выигрыш от введения дополнительного усилительного каскада всегда можно сделать больше проигрыша, неизбежного при передаче энергии из одного каскада в другой.

(Если, конечно, не испортить дело каким-либо неудачным схемным решением. Например, неудачным выбором конденсатора связи Ср между каскадами. Емкость этого конденсатора должна быть достаточно большой. Настолько большой, чтобы на самой низкой из усиливаемых частот емкостное сопротивление конденсатора Ср было значительно меньше, чем входное сопротивление Rbx-2 транзистора. Потому, что конденсатор и входное сопротивление транзистора образуют своего рода делитель напряжения, на котором делится на две части сигнал, получаемый от предыдущего каскада. И чем меньше емкостное


Рис. 82. Низкое входное сопротивление транзисторного усилителя трудно согласовать с высоким выходным сопротивлением предыдущего каскада.

сопротивление конденсатора Ср по сравнению с входным сопротивлением транзистора, тем большая часть сигнала достанется входной цепи транзистора и будет управлять его коллекторным током (рис. 82).

Теперь попробуем пойти по другому пути: попытаемся согласовать высокое выходное сопротивление транзисторного усилителя (часто говорят «высокоомный генератор») с нагрузкой, имеющей малое сопротивление (часто говорят «низко-омная нагрузка»), при помощи трансформатора. Согласующий трансформатор используют, в частности, в выходном каскаде усилителя низкой частоты (НЧ), который работает на динамический громкоговоритель с сопротивлением звуковой катушки 5-15 ом (таблица ). И хотя мы сейчас не пытаемся знакомиться с конкретными транзисторными усилителями, роль-согласующего трансформатора все же удобно будет рассмотреть именно на этом примере.

Мы привыкли к тому, что трансформатор повышает или понижает напряжение и ток, а сейчас в этот комплект нужно будет включить еще и сопротивление.

Сам процесс передачи энергии из первичной обмотки транс-



(0) (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16) (17) (18) (19) (20) (21) (22) (23) (24) (25) (26) (27) (28) (29) (30) (31) (32) (33) (34) (35) (36) ( 37 ) (38) (39) (40) (41) (42) (43) (44) (45) (46) (47) (48) (49) (50) (51) (52) (53) (54) (55) (56) (57) (58) (59)