Главная -> Книги

(0) (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16) (17) (18) (19) (20) (21) (22) (23) (24) (25) (26) (27) (28) (29) (30) (31) (32) (33) (34) (35) (36) (37) (38) (39) (40) (41) (42) (43) (44) (45) (46) (47) (48) (49) (50) ( 51 ) (52) (53) (54) (55) (56) (57) (58) (59) (51)

напряжение обратной связи с выхода усилителя и таким образом появляется цепочка обратной связи, охватывающая сразу все усилительные каскады.

Отрицательная обратная связь хотя и уменьшает общее усиление, зато в значительной степени снижает искажения, особенно те, что возникают в выходном каскаде в процессе «сшивания» сигнала. Одна из возможных причин таких искажений- некоторая неодинаковость параметров транзисторов, работающих в двухтактной схеме. Из-за этой неодинаковости «половинки» выходного сигнала немного различаются и форма сигнала оказывается несколько искаженной.

Каким же образом отрицательная обратная связь снижает искажения, исправляет форму сигнала? Чтобы ответить на этот вопрос, нужно вспомнить, что искажение формы сигнала, по сути дела, означает появление в сигнале новых гармоник, новых синусоидальных составляющих. Так было и при умышленном искажении формы - при выпрямлении переменного тока и детектировании. Так получается и при усилении.

По цепи отрицательной обратной связи новые, появившиеся в результате искажений гармоники подаются на вход усилителя в такой фазе, что они сами себя ослабляют. Мощность этих гармоник на выходе усилителя оказывается меньше, чем она была бы без обратной связи. Одновременно, конечно, ослабляются и полезные составляющие, из которых должен складываться неискаженный сигнал, но это дело поправимое. Чтобы скомпенсировать эту вредную деятельность отрицательной обратной связи, можно увеличить уровень сигнала, поступающего на вход усилителя, может быть даже добавив для этого еще один каскад.

Отрицательная обратная связь в усилителях НЧ, особенно в двухтактных усилителях, работающих в классах АБ и Б, находит очень широкое применение: отрицательная обратная связь позволяет сделать то, что никакими другими средствами не достигается,- она позволяет уменьшить искажения формы сигнала, уменьшить так называемые нелинейные искажения.

Отрицательная обратная связь позволяет выполнить еще одну важную операцию - осуществить регулировку тембра, то есть в нужном направлении изменить частотную характеристику усилителя. Эта характеристика показывает, как меняется усиление с изменением частоты сигнала.

Для идеального усилителя частотная характеристика - это просто прямая линия: усиление на всех частотах у такого усилителя одинаково. Но у реального усилителя частотная характеристика загнута, завалена в области самых низких и самых высоких частот. Это значит, что низшие и высшие частоты

звукового диапазона усиливаются хуже, чем средние частоты. Причины появления таких завалов частотной характеристики могут быть разными, но корень у них общий. Неодинаковое усиление на разных частотах получается потому, что в схеме имеются реактивные элементы -конденсаторы и катушки, сопротивление которых меняется с частотой.

Существует много способов исправления частотной характеристики, в том числе и введение частотно-зависимых элементов в цепь обратной связи. Пример таких элементов - цепочка R13C9 в нашем усилителе. Сопротивление этой цепочки с уменьшением частоты растет (Воспоминания № 13 и № 16), обратная связь уменьшается, и благодаря этому создается некоторый подъем частотной характеристики в области низших частот.

В усилителе имеется еще несколько цепей отрицательной обратной связи. Это конденсатор Св, соединяющий коллектор транзистора Гг с его базой; резистор R12, который подает на базы выходных транзисторов не только постоянное смещение, но еще и некоторую часть выходного сигнала; цепочка, которая создает обратную связь третьего каскада со вторым, но уже не по переменному, а по постоянному току (такая обратная связь повышает термостабильность усилителя).

Громкоговоритель включен в коллекторные цепи выходных транзисторов через разделительный конденсатор С4. Сопротивление звуковой катушки в данной схеме может составлять 6-10 ом. Усилитель развивает мощность до 100 мет при напряжении входного сигнала около 30-50 мв.

Существует довольно большое число схем бестрансформаторных усилителей на транзисторах разной проводимости. В большинстве из них в выходном каскаде используют составные транзисторы, то есть в каждое плечо включают два транзистора. Отсутствие трансформаторов и уменьшение числа разделительных конденсаторов позволяет в таких усилителях получить очень хорошую частотную характеристику. Однако начинающему радиолюбителю этот выигрыш достается довольно дорогой ценой - бестрансформаторные усилители, да еще с составными транзисторами, не всегда просто наладить. И поэтому, если у вас еще нет большого опыта в налаживании транзисторной аппаратуры, лучше собрать усилитель по классической двухтактной схеме с трансс)орматорами (рис. 45)*

Еще одна двухтактная схема с трансформаторами приведена на рис. 104-7. Главная особенность усилителя - фиксированное от отдельной батареи Б2 смещение на базу первого каскада Ti. Благодаря этому коллекторный ток транзистора Ti остается практически неизменным при уменьшении напряже-



ния коллекторной батареи вплоть до 3,5 в. С нижней части делителя RiRs, включенного в эмиттерную цепь Ти подается смещение на базы транзисторов выходного каскада. И поэтому при уменьщении коллекторного напряжения смещение транзисторов Г3Г4 не меняется. В результате усилитель работает при пониженном напряжении, хотя и с меньщей выходной мощностью (при 3,5 0-20 мвт), но без искажений.

Ток, потребляемый от батареи Бг, не превыщает 500 мка.

В усилителе имеется простейщий регулятор тембра RsCs и цепь обратной связи RgCg, снижающая искажения. Резистор i?9 необходим для того, чтобы при выключении Б2 (может случиться так, что Вк2, разомкнет цепь на какие-то доли секунды раньще, чем Вк,) транзистор Г, не оказался с «висящей базой» (рис. 89). Конденсаторы С7С6 -элементы отрицательной обратной связи, предотвращающие самовозбуждение на сверхзвуковых частотах. Ту же задачу выполняет конденсатор Си

Трансформаторы Гр, и Грг взяты от приемника «Альпинист» (таблица 12). Громкоговоритель с сопротивлением звуковой катущки около 6 ом.

При коллекторном напряжении 9 в усилитель развивает мощность 180 мвт и потребляет от батареи Бг ток не более 20-25 ма. Если нужно повысить выходную мощность, можно включить в качестве Г3 и Г4 мощные транзисторы, например П201. В этом случае нужно уменьщить в два раза /?? и подобрать /?5 с таким расчетом, чтобы общий коллекторный ток покоя Гз и Г4 составлял 15-25 ма. Для мощных транзисторов нужен другой выходной трансформатор, например, с такими данными: сердечник сечением около 3,5 см (Ш17Х17); первичная обмотка 330-1-330 витков ПЭ 0,31, вторичная обмотка 46 витков ПЭ 0,51. С транзисторами П201 усилитель развивает выходную мощность 1,5-2 вт.

На рис. 110 приведена схема усилителя НЧ с выходной мощностью 2,5-3 вт. Его второй каскад - фазоинвертор с разделенцыми нагрузками. После него следуют два соверщенно одинаковых эмиттерных повторителя (Гз, Г4), каждый из которых подает сигнал на свое плечо двухтактного выходного каскада. Для громкоговорителя с сопротивлением звуковой катущки 5 ом выходной трансформатор может иметь следующие данные: сердечник сечением 3 см; обмотка 1 - 2X200 витков ПЭ 0,33, обмотка И - 100 витков ПЭ 0,8.

Налаживание всех усилителей НЧ сводится к подбору режимов транзисторов. Для двухтактных схем желательно предварительно подобрать для обоих плеч транзисторы с близкими

Рис. 110-113 см. на цветной вклейке между стр. 288-289.

параметрами: коэффициентом усиления по току р и обратным током коллектора /ко. Если все детали исправны и схема собрана правильно, то усилитель, как правило, сразу начинает работать. И единственная серьезная неприятность, которая может обнаружиться при включении усилителя,- это самовозбуждение. Один из способов борьбы с ним - введение развязывающих фильтров (аналогичных RuC в схе,ме рис. 104- 6), которые предотвращают связь между каскадами через источники питания (рис. 77). С другими способами борьбы с самовозбуждением мы познакомимся в следующем разделе книги, после того, как выясним некоторые подробности пре-вращения усилителя в генератор.

ПРЕВРАЩЕНИЕ В ГЕНЕРАТОР

Человек, изучающий электронику, подобен туристу, плывущему мимо красивейших берегов Крыма или Кавказа и вынужденному наблюдать эти берега лишь с борта корабля. Человек, изучающий электронику, очень часто проплывает мимо изумительно красивых явлений природы, мимо очень важных, можно даже сказать - фундаментальных, научных проблем и не имеет возможности сойти на берег, чтобы познакомиться с ними. Иначе путешествие слишком затянется или даже изменится его конечный маршрут. (Последнее, кстати, совсем неплохо, но только не в начале пути. Есть немало примеров того, как радиоинженеры уходили в биологию, ракетостроение, математику, химию, медицину, геофизику, сельское хозяйство, астрономию и другие области. Обогащенные методами и идеями электроники, они открывали в этих областях науки новые направления или, подобно катализатору, резко ускоряли ход исследований.)

Мы с вами уже прошли мимо таких интересных и общих проблем как преобразование структуры вещества, универсальность гармонических (синусоидальных) колебаний, преобразование спектра сигнала, согласование генератора с нагрузкой, управление мощными потоками энергии с помощью слабых сигналов и др. Сейчас нам предстоит встреча еще с одним общим, универсальным явлением - с возникновением автоколебаний.

Мы часто встречаем механические автоколебания: вибрация самолетного крыла и автоколебания в гидравлических системах (вам наверняка приходилось слышать «поющий» водопроводный кран), и автоколебания далеких звезд, и автоколебания в мире атома, автоколебания при ядерных реак-



циях и электромагнитные автоколебания. Есть серьезные основания думать, что автоколебания играют важнейшую роль и в живой природе, что сама жизнь - это огромное многообразие разного рода, разной степени сложности биохимических автоколебаний.

Что же такое автоколебания? Энциклопедический словарь, определяет их так: «...незатухающие колебания, которые могут существовать в какой-либо системе в отсутствие переменного внешнего воздействия, причем амплитуда и период колебаний определяются свойствами самой системы». Применительно к транзисторному устройству, где создаются автоколебания (вы уже, конечно, догадались, что именно такое устройство и называется транзисторным генератором), это определение нужно понимать следующим образом. Мы подводим к генератору только питающее постоянное напряжение, а он дает нам непрерывные, непрекращающиеся электрические колебания (конечно, когда батарея разрядится, то колебания прекратятся, но об этом сейчас не стоит говорить). Генератор создает в своих цепях переменный ток и переменное напряжение, частота и амплитуда которых зависят только от элементов самой транзисторной схемы.

Очевидно, это определение направило ваши мысли к колебательному контуру. Ведь в нем тоже под действием постоянной порции энергии, например под действием энергии, полученной при зарядке конденсатора, возникают электрические колебания. И частота этих колебаний тоже зависит только от элементов самой системы - от индуктивности Lk катушки и емкости Ск конденсатора (Воспоминание № 20). Однако собственные колебания в контуре постепенно затухают, и таким образом нарушается основной элемент определения - «...незатухающие колебания».

И все же мы обратились к колебательному контуру не напрасно. В сочетании с транзисторным усилителем он позволяет получить самый настоящий генератор автоколебаний.

Почему затухают колебания в контуре? Потому что часть энергии теряется на активном сопротивлении потерь Rk и постепенно оно отбирает и превращает в тепло или в излучения всю запасенную в контуре энергию. Отсюда следует: чтобы колебания в контуре стали незатухающими, нужно ликвидировать сопротивление потерь. Или каким-то образом его скомпенсировать.

Вы уже, конечно, вспомнили, что у нас в арсенале есть эффективное средство борьбы с сопротивлением - Rk. Это положительная обратная связь, которую мы уже применяли в регенеративном усилителе (рис. 99). Но только, если в уси-304

лителе обратная связь не должна полностью компенсировать потери, в генераторе потери должны быть скомпенсированы полностью.

Здесь-то как раз и проходит граница между усилителем и генератором. До тех пор, пока в контуре еще есть сопротивление Rk, мы имеем усилитель. Но как только это сопротивление исчезает, как только обратная связь полностью компенсирует все потери, усилитель становится генератором, в нем происходит самовозбуждение. Это значит, что на вход усилителя уже не нужно подавать управляющий сигнал (когда-то его называли <!},0озбуждением», и отсюда слово «самовозбуждение»). Как только в контур попадет порция энергии- а это может произойти при любом толчке тока, например при включении питания,-то в контуре возникнут колебания, которые благодаря достаточно сильной обратной связи станут незатухающими. Рожденный в контуре и усиленный транзистором сигнал вновь возвращается в контур, чтобы участвовать в управлении работой транзистора. Транзистор сам создает для себя управляющий сигнал, работает в режиме самовозбуждения, а значит, генерирует незатухающий переменный ток. И, конечно же, поставщиком энергии для него, как всегда, является коллекторная батарея.

Чтобы автогенератор давал электрические колебания с неизменной амплитудой, нужно решить чрезвычайно сложную задачу: нужно, чтобы вносимое в контур отрицательное сопротивление было в точности равно собственному сопротивлению потерь, чтобы в контур через цепь обратной связи поступало ровно столько энергии, сколько нужно для компенсации потерь. Не меньше и не больше, потому что, если ввести в контур хоть чуть-чуть меньше энергии, чем нужно, колебания рано или поздно затухнут. А если ввести хоть немного лишней энергии, то амплитуда колебаний будет расти.

Осуществить столь точную, ювелирную дозировку вводимой в контур энергии просто невозможно. Если даже в какой-то момент путем тщательнейшего подбора расстояния между контурной катушкой Lk и катушкой обратной связи Lcb удастся установить необходимый баланс, то уже через мгновение он по какой-либо причине окажется нарушенным. То ли легкая вибрация (например, из-за проехавшего по улице автомобиля) сдвинет катушки на какой-нибудь микрон, то ли напряжение батареи уменьшится на какой-нибудь микровольт, то ли сопротивление проводов увеличится на какие-то доли ома из-за легкого дуновения ветерка. Одним словом, автогенератор всегда находится в неустойчивом динамическом состоянии, и, для того чтобы амплитуда колебаний оставалась постоянной, нуж-



(0) (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16) (17) (18) (19) (20) (21) (22) (23) (24) (25) (26) (27) (28) (29) (30) (31) (32) (33) (34) (35) (36) (37) (38) (39) (40) (41) (42) (43) (44) (45) (46) (47) (48) (49) (50) ( 51 ) (52) (53) (54) (55) (56) (57) (58) (59)