Главная -> Книги

(0) (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16) (17) (18) (19) (20) (21) (22) (23) (24) (25) (26) (27) (28) (29) (30) (31) (32) (33) (34) (35) (36) (37) (38) (39) (40) (41) (42) (43) (44) (45) (46) (47) (48) (49) (50) (51) (52) (53) ( 54 ) (55) (56) (57) (58) (59) (54)

готовый блок усиления, схема которого приведена на рис. 104-1. Роль зарядного резистора выполняет вода, налитая в стакан и включенная в цепь с помощью двух длинных электродов из тонкой жести или из толстой проволоки.

Если поднимать или опускать эти электроды или один из них, то объем воды, включенной в цепь, будет меняться, а значит, будет меняться и частота колебаний блокинг-генератора. Элементы цепи подобраны таким образом, чтобы генератор работал в диапазоне звуковых частот и чтобы, перемещая один из электродов, можно было бы исполнять простейщие мелодии. В качестве Tpi можно взять ВТК (блокинг-трансфор-матор кадровый) от любого телевизора.

На изменении сопротивления зарядной цепочки основано изменение тона в другом простейшем клавишном музыкальном инструменте (рис. 111-1). Сопротивления, определяющие тот или иной тон, образованы двумя резисторами, например

а чтобы подбором меньшего сопротивления легче было бы осуществить точную настройку инструмента. Еще проще подгонять частоту генератора, если в зарядную цепь включить переменные резисторы. Настройку генератора нетрудно сделать с помощью рояля. Ориентировочно сопротивление/?д + 7? должно составлять 150 + 200 ком, а каждое следующее должно быть меньще примерно на 10 ком.

Клавиши легко изготовить самому из тонкой и упругой стальной, латунной или гетинаксовой пластинки, закрепив на ней простейшие контакты (рис. 111-3).

После того как электромузыкальный инструмент настроен и налажен, можно попытаться сделать более богатым его звучание, ввести несколько цепей формирования тембра. Изменение тембра - это всегда изменение формы сигнала, или, иначе говоря, его искажение. Поэтому в систему формирования тембра могут, например, входить диоды, срезающие половину сигнала. Или диоды, работающие в режиме ограничения (рис. 27-9). Формирование тембра в электромузыкальных инструментах лищь расширяет наш список возможных «профессий» полупроводникового диода, но еше далеко не завершает этот список.

ПРЕКРАСНЫЕ ИСКАЖЕНИЯ

Если вы построите приемник по одному из приведенных в этой книге описаний и захотите, не меняя основной схемы ввести в приемник коротковолновый диапазон, то знайте - это напрасная затея. 318

На первый взгляд может показаться, что, для того чтобы принимать короткие волны, нужно лишь изготовить новый колебательный контур с очень небольшой индуктивностью. Резонансная частота контура при этом резко увеличится, и если правильно рассчитать индуктивность катушки, то можно вогнать частоту настройки контура в границы коротковолнового диапазона. Однако такая мера, как это ни странно, ничего не даст - контур будет настраиваться на коротковолновые станции, а принимать их вы наверняка не будете.

Причин здесь несколько. На коротких волнах, то есть на частотах ог нескольких Мгц до нескольких десятков Мгц, все наши усилительные схемы не работают или в лучшем случае работают плохо. Начинают сказываться паразитные емкости, которые не играли почти никакой роли на средних и длинных волнах, то есть на частотах меньше или немного больше чем 1 Мгц. Из-за тех же паразитных емкостей возникают обратные связи, и усилитель, как правило, возбуждается. Но даже если в результате долгого, кропотливого налаживания удастся миновать эти неприятности и провести сигналы коротковолновых станций от антенны до детектора, то и в этом случае пользоваться приемником все равно нельзя будет, потому что контур пропустит в приемник сразу очень большое число станций.

На коротких волнах даже очень хороший контур не в состоянии отделить нужную станцию не только от соседней, но и от соседей этой соседней станции. Понять это нетрудно. Радиовещательные станции отстоят друг от друга на 10 кгц: если одна станция работает, например, на частоте 700 кгц, то уже на 710 кгц или 690 кгц может работать другая станция. Сравнительно небольшой интервал - 10 кгц -на длинных волнах составляет примерно 2-7% резонансной частоты. Такое отличие частот, такое отклонение от резонанса хороший контур может легко заметить, и поэтому на длинных волнах он обладает неплохой избирательностью, неплохо ослабляет соседние мешающие станции.

На средних волнах дело уже обстоит хуже: здесь частота соседней мешающей станции отличается от резонансной частоты всего на 0,7-2% (это вполне понятно - с переходом ог длинных волн к средним резонансная частота контура повышается, а расстояние до соседней станции остается таким же, каким и было,-10 кгц). Вот почему на средних волнах избирательность оказывается значительно хуже, чем на длинных.

Ну, а что касается коротковолнового диапазона, то здесь входной контур любого из наших приемников, по сути дела,



вообще не обладает никакой избирательностью. На KB диапазоне частота соседней станции отличается от резонансной частоты всего на 0,05-0,2%, и заметить такое различие контур не в состоянии. Практически он сразу может пропустить в приемник без заметного ослабления двадцать-пятьдесят радиовещательных станций, не считая множества «морзянок», индустриальных и атмосферных помех.

Если вы захотите в порядке «психологического практикума» найти выход из создавшегося трудного положения, то наверняка прежде всего предложите два решения. Решение первое: можно увеличить число колебательных контуров. Решение второе: можно ввести положительную обратную связь и с ее помощью улучшить добротность контура, сделать его резонансную кривую более острой.

К сожалению, практически ни одно из этих двух решений не приемлемо. Увеличив число контуров, вы страшно усложните приемник: ведь каждый контур - это самостоятельная катушка, отдельная секция переключателя диапазонов и, что страшнее всего, отдельный, но в то же время связанный с остальными конденсатор настройки (все контуры должны перестраиваться одновременно поворотом одной ручки!). Но даже если бы мы создали столь громоздкую многоконтурную систему настройки, то и она не решила бы проблему перевода наших простейших приемников на короткие волны. Что же касается положительной обратной связи, то на коротких волнах она крайне неустойчива и может лишь истрепать нервы владельцу приемника, но никак не обеспечить устойчивый, уверенный прием коротковолновых станций.

В этом месте, по-видимому, многие из вас хотят задать вопрос: если все так сложно и все так мрачно, то как же работают на коротких волнах такие, например, транзисторные приемники, как «Спидола», «Спорт-2», «Соната», «Сувенир» и другие? Ответ прост: в этих приемниках применен совершенно особый, еще не знакомый нам супергетеродинный принцип радиоприема.

Сущность его состоит в следующем. В каком бы диапазоне ни велся прием, какую бы станцию мы ни принимали, ее сигнал в приемнике прежде всего преобразуется в новый сигнал, имеющий стандартную, для всех случаев одинаковую частоту: 465 кгц. А дальше уже усиливается этот двойник сигнала принимаемой станции, усиливается сигнал промежуточной частоты (ПЧ). На промежуточной частоте происходит и очистка от мешающих соседних станций. Теперь их частоты и для средневолнового диапазона и для коротковолнового отличаются от резонансной (не забудьте, она всегда равна 465 кгц) на весьма 320

ощутимую величину - более чем на 2%- Но даже не эта цифра радует больше всего. Самое главное то, что промежуточная частота всегда одинакова, а значит, в усилитель ПЧ можно включить большое число раз и навсегда настроенных контуров.

После того как с таким блеском предстали перед нами достоинства супергетеродинного приема, остается доказать, что этот принцип в действительности может быть реализован, что можно сигнал любой принимаемой станции превратить в сигнал стандартной промежуточной частоты.

Нажмите две близкие клавиши рояля - сначала по отдельности, а затем вместе. Внимательно прислушавшись, вы обнаружите, что при совместном звучании клавиши создают какой-то низкий, хрипловатый и довольно слабый призвук, которого не дает ни одна из них в отдельности. Этот призвук появляется в результате одновременного искажения двух сигналов, в данном случае - двух самостоятельных звуков, которые дают две одновременно нажатые клавиши.

Дело в том, что наше ухо в какой то степени ведет себя как полупроводниковый диод: оно имеет нелинейную характеристику (см. стр. 161) и слегка искажает форму звукового сигнала, искажает спектр звука. Когда в ухо попадает только один звук, то в результате искажений появляются его гармоники, составляющие с более высокими и всегда кратными частотами. Когда же искажениям подвергаются одновременно два звука, то, кроме гармоник каждого из них, появляются синусоидальные колебания с так называемыми комбинационными частотами - суммарной и разностной (промежуточной).

Поясним это числовым примером. Допустим, что нажата клавиша, издающая звук с частотой 440 гц («ля» первой октавы). В результате искажений этого звука появятся его гармоники - 880 гц, 1320 гц, 1760 гц и т. д. Аналогично звук с частотой 523 гц («до» второй октавы) даст гармоники 1046 гц, 1569 гц, 2092 гц и т. д. Когда же наше ухо подвергнет искажениям одновременно оба звука, то, кроме всех этих гармоник, появятся многочисленные комбинационные частоты и в их числе - синусоидальные колебания с суммарной частотой 963 гц (523 + 440) и разностной (промежуточной) частотой 83 гц (523-440).

Детально пояснить причину появления комбинационных частот довольно трудно: для этого нужны длинные математические выкладки и немало новых, сравнительно сложных понятий. Поэтому всем желающим убедиться в том, что раз-постная (промежуточная) частота действительно возникает, можно посоветовать лишь нажимать на две близкие клавиши



рояля и внимательно прислушиваться к их совместному звучанию.

Есть, правда, еще один способ удостовериться в том, что при одновременном искажении двух сигналов появляется разностная (промежуточная) частота: достаточно включить какой-нибудь супергетеродинный приемник и убедиться в том, что он действительно работает. Лучшего доказательства существования промежуточной частоты и не придумаешь. Потому что в супергетеродине сам сигнал принимаемой станции, как правило, перестает существовать уже в первом каскаде. А дальше усиление, отделение от помех и детектирования производится с рожденным в самом приемнике сигналом промежуточной частоты.

Блок-схема супергетеродинного приемника приведена в верхней левой части рис. 119, листок А. Принятый сигнал с частотой fcnr подается на преобразователь частоты. Туда же подается вспомогательный сигнал с частотой fr от собственного маломощного генератора, расположенного в самом приемнике. Этот генератор называется гетеродином, а частоту его можно менять переключением катушек и изменением емкости конденсатора настройки. Преобразователь частоты соединен с усилителем ПЧ, все контуры которого раз и навсегда настроены на промежуточную частоту fnp.

Мы уже говорили, что на коротких и даже на средних волнах входной контур может пропустить сразу несколько сигналов. Встретившись в преобразователе частоты с этими прошедшими через входной контур сигналами, переменное напряжение гетеродина создаст с ними разностные частоты. Но только одна из этих разностных частот, принадлежащая только одной, нужной нам станции, будет равна стандартной промежуточной частоте, на которую настроены все контуры приемника. И только эту разностную частоту усилитель ПЧ пропустит к детектору.

Если вы захотите принять другую станцию, то нужно будет изменить частоту гетеродина так, чтобы он создал сигнал стандартной промежуточной частоты уже с этой другой станцией. Изменяя частоту гетеродина, мы будем получать промежуточную частоту 465 кгц, то с одной, то с другой, то с третьей станции, то есть будем перестраивать приемник с одной станции на другую.

Несколько слов о самом главном элементе супергетеродина- о преобразователе частоты. Этот элемент должен обязательно искажать форму сигнала так, как, скажем, наше ухо искажает звук. Без этих искажений в принципе не могут появиться новые составляющие, в том числе не может появиться 322


Рис. 119. При одновременном искажении двух сигналов возникают составляющие с разностной и суммарной частотами.

И разностная частота. Иногда роль преобразователя частоты выполняет диод, но чаще - транзистор, работающий где-то в районе загиба входной характеристики. Только в этом случае оба сигнала - поступивший из входной цепи и сигнал собственного гетеродина - будут искажаться и дадут разностную частоту.

Кстати, о слове «искажения». В данном случае его, по-видимому, нельзя считать удачным, хотя оно и правильно отражает все, что происходит с сигналами. Подобно тому, как наше ухо искажает звук с «хорошими намерениями» н в результате таких искажений у звука лишь появляется приятная тембровая окраска, так и преобразователь обычно не искажает, не портит низкочастотную огибающую принятого сигнала, не портит конечную продукцию приемника - звук. И когда дело касается создания промежуточной частоты, то никогда не говорят об искажении сигналов, а называют этот процесс преобразованием частоты.

Уделив так много внимания принципу супергетеродинного



(0) (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16) (17) (18) (19) (20) (21) (22) (23) (24) (25) (26) (27) (28) (29) (30) (31) (32) (33) (34) (35) (36) (37) (38) (39) (40) (41) (42) (43) (44) (45) (46) (47) (48) (49) (50) (51) (52) (53) ( 54 ) (55) (56) (57) (58) (59)