Главная -> Книги

(0) (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16) (17) (18) (19) (20) (21) (22) (23) (24) (25) (26) (27) (28) (29) (30) (31) (32) (33) (34) (35) (36) (37) (38) (39) (40) (41) (42) (43) (44) (45) (46) (47) (48) (49) (50) (51) (52) (53) (54) (55) (56) ( 57 ) (58) (59) (57)

чение связано с тем, что сам транзистор П201 не допускает большего напряжения между коллектором и эмиттером (см. таблицу 10). Можно, конечно, применить транзисторы с более высоким допустимым коллекторным напряжением (например, П214, допускающие напряжение на коллекторе до 65 в) и тем самым повысить напряжение, подводимое к исполнительному блоку. А это, в свою очередь, позволит включать в каждую гирлянду большее число последовательно соединенных лампочек.

Вообще число лампочек подбирается таким образом, чтобы полностью использовать подводимое напряжение. В данном случае, когда это напряжение составляет 20 в, в каждую гирлянду нужно включить четыре лампочки на 6,3 в, или шесть лампочек на 3,5 в, или, наконец, восемь лампочек на 2,5 в.

Без дополнительного теплоотвода для транзистора П201 допустимый ток коллектора составляет 1,5 а. Это позволяет в коллекторную цепь каждого триода включить параллельно несколько групп последовательно соединенных лампочек. Так, например, если применены лампочки, потребляющие ток 0,3 а, то можно соединить параллельно пять групп таких лампочек (для спокойствия лучше четыре) или десять групп (лучше восемь) лампочек, потребляющих ток 0,15 а. Уменьшить число параллельных групп можно как угодно, так как транзистору от этого только легче.

Мы не приводим данных вторичных обмоток трансформатора. Число витков для них легко рассчитать, если известно число витков первичной обмотки, а значит, и число витков на один вольт (см. стр. 109). Общая потребляемая мощность для четырех переключающих транзисторов не превышает 60 вт. Мощные транзисторы работают поочередно, и каждая пара потребляет примерно 30 вт (22 е-1,5 а), а значит, трансформатор Tpi можно изготовить из небольшого силового трансформатора от сетевого приемника. С трансформатора удаляют все обмотки, кроме сетевой, и располагают нА их месте обмотки II и III. Обмотку III нужно намотать довольно толстым проводом, диаметром 1,0-1,2 мм.

Выбор диаметра провода для обмотки III и диодов, заменяющих Дъ, нужно производить с учетом нагрузки мощных транзисторов. Совсем не обязательно давать им предельную нагрузку - 1,5 а. Вполне достаточно нагрузить каждый триод током до 0,6 а (например, две гирлянды по 0,3 а каждая).

С учетом среднего выпрямленного тока 3 а выбран диод Дв для выпрямителя, питающего транзисторные реле, а значит, и сами гирлянды. Если под руками нет диода, рассчитанного на ток 3 а, то можно соединить параллельно десять дио-336

дов, допускающих выпрямленный ток 0,3 а (300 ма). При этом последовательно с каждым диодом нужно включить одинаковые резисторы по 3-5 ом каждый (объяснение см. на рис. 27-15).

К переключателю можно добавить еще некоторое количество триггеров с мощными транзисторами и получить таким образом мигание гирлянд с периодом 4 сек, 8 сек "и т. д.

Для переключателя с большим числом переключаемых гирлянд нужно намотать обмотку III более толстым проводом и подобрать диод д5, допускающий нужную величину выпрямленного тока.

Описанный нами переключатель для елки - это ближайший родственник гигантов электроники: электронных вычислительных машин. Попробуйте представить себе, что мы может вводить в блок триггеров строго определенное число миганий лампочек. Тогда наш переключатель са.м становится вычислительной машиной. Действительно, для того чтобы разделить какое-либо число на четыре, достаточно ввести это число в виде импульсов на вход блока триггеров и получить результат, подсчитав импульсы на выходе второго триггера. А чтобы умножить какое-либо число на два, нужно отсчитать соответствующее этому числу количество импульсов на выходе первого триггера, а затем определить, сколько импульсов за соответствующее время было подано на вход этого триггера с тактового генератора.

В действительности, конечно, в вычислительных машинах все происходит намного сложнее, но принцип остается тот же: числа представлены в виде электрических сигналов, в виде серий импульсов, и именно с этими сигналами машина производит всевозможные преобразования.

В электрических импульсах, включающих тот или иной элемент схемы, записана и программа действия машин. Например, вводятся в машину два числа Л и £ и дается такая программа: «Умножить число А на число Б, затем прибавить число А к числу Б, разделить первый результат на второй...».

Работая по этой программе, машина будет всякий раз при любых вводимых в нее двух числах выдавать вам значение результирующей емкости при последовательном соединении двух конденсаторов или результирующего сопротивления при параллельном соединении резисторов.

В виде чисел-сигналов вводятся в машину описания самых разных событий и их характеристики. Возьмем, к примеру, машину, играющую в шахматы. Для нее обязательно производят предварительную числовую оценку фигур. Ферзя, например, оценивают в 10 условных единиц, ладью - в 5 единиц,



пешку - в единицу и т. д. Ршеют свои числовые оценки сдвоенная пешка, рокировка, давление на центральные поля и т. д. Положение фигур, правила их передвижения и само передвижение, правила снятия фигур и т. п. также выражаются комбинациями цифр. Поэтому и каждый ход сводится к операциям над числами, и результат этого хода также представляет собой число, которое легко может быть превращено в определенное положение фигур на доске.

Можно построить переключатель гнрлянд, который будет иллюстрировать работу логических элементов «и», «или», «не». Основа такого переключателя (рис. 124) - два мультивибратора (MBi и МВ2), два тактовых генератора, генерирующих прямоугольные импульсы разной длительности, например с периодом 1,5 сек и 1 сек. На два транзисгорных реле (TPi и TPq) эти импульсы подаются непосредственно с мультивибраторов, а на остальные транзисторные реле - через логические элементы. Так, импульсы, поступающие на транзисторное реле (ТРз) через элемент «или», будут зажигать свою гирлянду под действием сигнала любого из мультивибраторов. Импульсы, отпирающие транзисторное реле (TPs) через элемент «и», будут включать гирлянду лишь при появлении импульсов одновременно от двух мультивибраторов. Каждый из логических элементов можно снабдить еще и элементом «не», который будет включать соответствующее транзисторное реле [TPi и ТРб) тогда, когда основное реле (ГРз и ТР) будет выключаться. При желании можно усложнить схему и ввести в нее еще ряд логических элементов. Можно, например, ввести элемент «или» («или»2), который будет зажигать гирлянду (Л7) от двух источников редко появляющихся импульсов («и» и «не»2). На рис. 124 под блок-схемой переключателя приведен график появления импульсов в гирляндах лампочек. Изменяя длительность импульсов тактовых генераторов, можно получить самые причудливые мигания лампочек, лишенные, казалось бы, всякого порядка.

Мы не приводим детальную схему «логического» переключателя не только из-за ее громоздкости, но еще и потому, что ее легко составит каждый, кто разобрался в предыдущей схеме. Во всяком случае, основные элементы будущей схемы - мультивибраторы и транзисторные реле - нам уже известны. Логические элементы тоже построить нетрудно. Подав два сигнала на общий резистор и подобрав его величину так, чтобы под действием любого из этих сигналов на резисторе появлялось необходимое для мощного транзистора отпирающее няпряжение, мы получим элемент «или». Уменьшив 338

®-

или;

®-

"5

«7

Рис, 124. Скелетная схема (1) и диаграмма (2) работы переключателя гирлянд с «логикой».



сопротивление резистора примерно вдвое и уменьшив тем самым отпирающее напряжение, можно добиться, чтобы оно достигало нужной величины лишь при совместном действии сигналов. Таким образом, мы получим элемент «и». Наконец, снимая отпирающее напряжение для транзисторного реле не с эмиттера, а с коллектора предыдущего каскада, можно получить элемент «не»: предварительно запертый постоянным напряжением мощный транзистор будет отпираться лишь тогда, когда прекратится ток в этом предварительном каскаде и на его коллекторе резко возрастет «минус».

Обе схемы «умных» переключателей хотя и не очень сложны, однако же и не очень просты. Во всяком случае, их налаживание требует понимания принципов работы транзистора, суммирования и вычитания напряжений и токов в сложных цепях, взаимного влияния элементов, входящих в единую электрическую цепь, и т. д. и т. п. Для тех, кто захочет начать с более простого переключателя, на рис. 113 приводится схема, которая не «рассуждает» и не «считает», а просто переключает две группы лампочек. В этой схеме мощные транзисторы (Г3Г4), способные переключать гирлянды лампочек, работают непосредственно от мультивибратора (Г1Г2)- Собрав два таких мультивибратора с разными периодами импульсов, можно получить довольно эффектную систему переключения и от нее уже постепенно (например, добавляя триггеры или логические элементы) двигаться к более сложному, более «умному» переключателю.

Данные трансформатора и самих гирлянд такие же, как для переключателя по схеме рис. 123.

Во всех схемах, о которых шла речь в этом разделе, транзисторы работают в ключевом режиме - они либо полностью заперты, либо полностью открыты. Транзистор в таком режиме действительно напоминает ключ (выключатель), замыкающий либо размыкающий электрическую цепь. Транзистор-ключ- один из самых популярных элементов электронной автоматики.

То, что было рассказано о применении транзисторов в автоматике, можно рассматривать лишь как приглашение заняться этой интересной областью. Каждый, кто захочет принять такое приглашение, сможет двинуться дальше под парусами богатой любительской литературы по электронной автоматике. Мы же на этом закончим знакомство с транзисторными ключевыми схемами и тем самым вообще закончим свое путешествие, считая, что первый шаг в транзисторную электронику сделан.

ФИНИШ, КОТОРЫЙ можно СЧИТАТЬ СТАРТОМ

Что же можно сказать в конце нашего долгого пути?

Оглядываясь назад, можно отметить, что путь этот прошел по многим интересным территориям. Мы увидели немало конкретных практических транзисторных схем и, что особенно важно, познакомились с некоторыми общими принципами построения схем, с важными для транзисторной техники физическими процессами, с главными законами электрических цепей.

В то же время нужно честно признать, что многие важные и интересные проблемы нам так и не удалось внимательно рассмотреть. Всем известно, что «нельзя объять необъятное», но, оказывается, и «объятное» объять не так-то просто.

Хорошо было бы, например, подробней остановиться на том, что такое генератор тока и что такое генератор напряжения (см. стр. 222). Первое из этих условных названий относится к электрической цепи, в которой сопротивление нагрузка /?н значительно меньше, чем внутреннее сопротивление генератора Rr. Второе название относится к цепи, где, наоборот

Rn »/?г.

Само название «генератор тока», если его понимать буквально, не отражает всего, что происходит в цепи, потому что никак не может быть так, чтобы генератор давал нагрузке только ток: раз в нагрузке есть ток, то, значит, на ней действует и какое-то напряжение. Название «генератор тока» лишь подчеркивает следующую важную особенность-в электрической цепи, в которой RrRn, как бы ни менялось сопротивление нагрузки Ru, через нее все равно будет идти один и тот же ток. То есть в цепи генератора тока, а значит, в цепи подключенной к нему нагрузки величина тока практически не зависит от самого сопротивления нагрузки.

Объясняется это, кстати, довольно просто. Ток в цепи, в которую входят два последовательно соединенных резистора (в данном случае Rr и Ra), зависит от общего сопротивления цепи. А поскольку сопротивление одного из двух резисторов во много раз больше, чем другого (мы ведь назвали генератором тока именно такой генератор, внутреннее сопротивление которого Rr во много раз больше, чем сопротивление нагрузки Rh), то общее сопротивление цепи, а значит, и ток в ней в основном и будет определяться величиной Rr. Представьте себе, что к генератору с внутренним сопротивлением 100 ом поочередно подключают три разные нагрузки с сопротивлениями 1, 2 и 3 ом. Во всех этих случаях общее сопротивление цепи окажется примерно равным 100 ом и ток в цепи при замене



(0) (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16) (17) (18) (19) (20) (21) (22) (23) (24) (25) (26) (27) (28) (29) (30) (31) (32) (33) (34) (35) (36) (37) (38) (39) (40) (41) (42) (43) (44) (45) (46) (47) (48) (49) (50) (51) (52) (53) (54) (55) (56) ( 57 ) (58) (59)