Главная -> Книги

(0) (1) (2) (3) (4) (5) (6) (7) (8) (9) ( 10 ) (11) (12) (13) (14) (15) (16) (17) (18) (19) (20) (21) (22) (23) (24) (25) (26) (27) (28) (29) (30) (31) (32) (33) (34) (35) (36) (37) (38) (39) (40) (41) (42) (43) (44) (45) (46) (47) (48) (49) (50) (51) (52) (53) (54) (55) (56) (57) (58) (59) (60) (61) (62) (63) (64) (65) (66) (67) (68) (69) (70) (71) (72) (73) (74) (75) (76) (77) (78) (79) (80) (81) (82) (83) (84) (85) (86) (87) (88) (89) (90) (91) (92) (93) (94) (95) (96) (97) (98) (99) (100) (101) (102) (103) (104) (105) (106) (107) (108) (109) (110) (111) (112) (113) (114) (10)


© ®

©

©

>

и 1

©

Рис. 2.11

землю (любую проводящую среду) образуются дополнительные ветви, сама схема становится отличной от исходной и токораспре-деление в ней меняется.

§2.10. Потенциальная диаграмма. Под потенциальной диаграммой понимают график распределения потенциала вдоль какого-либо участка цепи или замкнутого контура. По оси абсцисс на нем откладывают сопротивления вдоль контура, начиная с какой-либо произвольной точки, по оси ординат - потенциалы. Каждой точке участка цепи или замкнутого контура соответствует своя точка на потенциальной диаграмме.

Рассмотрим последовательность построения потенциальной диаграммы поданным примера 2.

Пример П. Построить потенциальную диаграмму для контура аЬсеа (см. рис.

2.9).

Решение. Подсчитаем суммарное сопротивление контура: 4 + 3+1 =80м. Выберем масштабы по оси абсцисс (ось х) и по оси ординат (ось у),

Произвольно примем потенциал одной из точек, например точки а, Фц=0. Эту точку на диаграмме рис. 2.11, а поместим в начало координат.

Потенциал точки Ь: = Фц + ~ Фа - 60 = - 60 В; ее координаты: х= 4, у = -60. Потенциал точки с: ф = ф, + = В; ее координаты: х = 4, у =.. Потенциал точки е: ф = ф + IR=4- 1X 1=ЗВ; ее координаты: х = 5; у = 3. v

Тангенс угла а, наклона прямой а, к оси абсцисс пропорционален току /2,

тангенс угла наклона прямой се по осям хну.

Обратим внимание на различие в знаках, с которыми входит падение напряжения IR при определении потенциала какой-либо точки схемы через потенциал исходной точки и при составлении уравнений по второму закону Кирхгофа. При вычислении потенциала последующей точки через потенциал предыдущей IR берут со знаком минус, если перемещение по сопротивлению R совпадает по направлению с током, тогда как при составлении уравнений по второму закону Кирхгофа IR некоторого участка цепи берут в сумме 1,1 R со знаком плюс, если обход этого участка совпадает с направлением тока / на нем.

току /3; tga = " - масштабы



§ 2.11. Энергетический баланс в электрических цепях. При протекании токов по сопротивлениям в последних выделяется теплота. На основании закона сохранения энергии количество теплоты, выделяющееся в единицу времени в сопротивлениях схемы, должно равняться энергии, доставляемой за то же время источником питания.

Если направление тока /, протекающего через источник ЭДС Е, совпадает с направлением ЭДС, то источник ЭДС доставляет в цепь энергию в единицу времени (мощность), равную EI, и произведение EI входит в уравнение энергетического баланса с положительным знаком.

Если же направление тока / встречно направлению ЭДС Е, то источник ЭДС не поставляет энергию, а потребляет ее (например, заряжается аккумулятор), и произведение EI войдет в уравнение энергетического баланса с отрицательным знаком.

Уравнение энергетического баланса при питании только от источников ЭДС имеет вид

IR=LEL

Когда схема питается не только от источников ЭДС, но и от источников тока, т. е. к отдельным узлам схемы подтекают и от них утекают токи источников тока, при составлении уравнения энергетического баланса необходимо учесть и энергию, доставляемую источниками тока. Допустим, что к узлу а схемы подтекает ток / от источника тока, а от узла b этот ток утекает. Доставляемая источником тока мощность равна VJ. Напряжение t/, и токи в ветвях схемы должны быть подсчитаны с учетом тока, подтекающего от источника тока. Последнее проще всего сделать по методу узловых потенциалов (см. § 2.22). Общий вид уравнения энергетического баланса:

Для практических расчетов электрических цепей разработаны методы, более экономичные в смысле затраты времени и труда, чем метод расчета цепей по законам Кирхгофа. Рассмотрим эти методы.

§2.12. Метод пропорциональных величин. Согласно методу пропорциональных величин, в самой удаленной от источника ЭДС ветви схемы (исходной ветви) произвольно задаемся некоторым током, например током в 1 А. Далее, продвигаясь к входным зажимам, находим токи в ветвях и напряжения на различных участках схемы. В результате расчета получим значение напряжения U схемы и токов в ветвях, если бы в исходной ветви протекал ток в 1 А.

Так как найденное значение напряжения в общем случае не равно ЭДС источника, то следует во всех ветвях изменить токи,




Рис. 2.12

умножив их на коэффициент, равный отношению ЭДС источника к найденному значению напряжения в начале схемы.

Метод пропорциональных величин, если рассматривать его обособленно от других методов, применим для расчета цепей, состоящих только из последовательно и параллельно соединенных сопротивлений и при наличии в схеме одного источника.

Однако этот метод можно использовать и совместно с другими методами (преобразование треугольника в звезду, метод наложе-ния и т. п.), которые рассмотрены далее.

Пример 12. Найти токи в ветвях схемы рис. 2.11, б методом пропорциональных величин. Сопротивления схемы даны в омах.

Решение. Задаемся током в ветви с сопротивлением 4 Ом, равным 1 А, и подсчитываем токи в остальных ветвях (числовые значения токов обведены на рисунке кружками). Напряжение между точками тип равно l-44-3-3-f4-3 = 25B, Так как ЭДС £ = 100 В, все токи следует умножить на коэффициент k = 100/25 = 4.

§2.13, Метод контурных токов. При расчете методом контурных токов полагают, что в каждом независимом контуре схемы течет свой контурный ток. Уравнения составляют относительно контурных токов, после чего через них определяют токи ветвей.

Таким образом, метод контурных токов можно определить как метод расчета, в котором за искомые принимают контурные токи. Число неизвестных в этом методе равно числу уравнений, которые необходимо было бы составить для схемы по второму закону Кирхгофа.

Следовательно, метод контурных токов более экономен при вычислительной работе, чем метод на основе законов Кирхгофа (в нем меньше число уравнений).

Вывод основных расчетных уравнений приведем применительно к схеме рис. 2.12, в которой два независимых контура. Положим, что в левом контуре по часовой стрелке течет контурный ток а в правой (также по часовой стрелке) - контурный ток 1. Для каждого контура составим уравнения по второму закону Кирхгофа. При этом учтем, что по смежной ветви (с сопротивлением /5) течет сверху вниз ток /,, - /32- Направления обхода контуров примем также по часовой стрелке.



(0) (1) (2) (3) (4) (5) (6) (7) (8) (9) ( 10 ) (11) (12) (13) (14) (15) (16) (17) (18) (19) (20) (21) (22) (23) (24) (25) (26) (27) (28) (29) (30) (31) (32) (33) (34) (35) (36) (37) (38) (39) (40) (41) (42) (43) (44) (45) (46) (47) (48) (49) (50) (51) (52) (53) (54) (55) (56) (57) (58) (59) (60) (61) (62) (63) (64) (65) (66) (67) (68) (69) (70) (71) (72) (73) (74) (75) (76) (77) (78) (79) (80) (81) (82) (83) (84) (85) (86) (87) (88) (89) (90) (91) (92) (93) (94) (95) (96) (97) (98) (99) (100) (101) (102) (103) (104) (105) (106) (107) (108) (109) (110) (111) (112) (113) (114)