Главная -> Книги

(0) (1) (2) (3) (4) (5) (6) (7) (8) ( 9 ) (10) (11) (12) (13) (14) (15) (16) (17) (18) (19) (20) (21) (22) (23) (24) (25) (26) (27) (28) (29) (30) (31) (32) (33) (34) (35) (36) (37) (38) (39) (40) (41) (42) (43) (44) (45) (46) (47) (48) (49) (50) (51) (52) (53) (54) (55) (56) (57) (58) (59) (60) (61) (62) (63) (64) (65) (66) (67) (68) (69) (70) (71) (72) (73) (74) (75) (76) (77) (78) (79) (80) (81) (82) (83) (84) (85) (86) (87) (88) (89) (90) (91) (92) (93) (94) (95) (96) (97) (98) (99) (100) (101) (102) (103) (104) (105) (106) (107) (108) (109) (110) (111) (112) (113) (114) (9)

согласно второй -

Физически первый закон Кирхгофа означает, что движение зарядов в цепи происходит так, что ни в одном из узлов они не скапливаются.

Если мысленно рассечь любую схему произвольной плоскостью и все находящиеся по одну сторону от нее рассматривать как некоторый большой "узел", то алгебраическая сумма токов, входящих в этот "узел", будет равна нулю.

Второй закон Кирхгофа также можно сформулировать двояко:

I) алгебраическая сумма падений напряжения в любом замкнутом контуре равна алгебраической сумме ЭДС вдоль того же контура:

(в каждую из сумм соответствующие слагаемые входят со знаком плюс, если они совпадают с направлением обхода контура, и со знаком минус, если они не совпадают с ним);

2) алгебраическая сумма напряжений (не падений напряжения!) вдоль любого замкнутого контура равна нулю:

2U,, = 0. (2.4а)

Для периферийного контура схемы рис. 2.9

Uae + и ее + + f.. = 0.

Законы Кирхгофа справедливы для линейных и нелинейных цепей при любом характере изменения во времени токов и напряжений.

Сделаем два замечания: 1) запись уравнения по второму закону Кирхгофа в форме (2.4) может быть получена, если обойти какой-либо контур некоторой схемы и записать выражение для потенциала произвольной точки этого контура через потенциал этой же точки (взяв ее за исходную при обходе) и падения напряжения и ЭДС; 2) при записи уравнений по второму закону Кирхгофа в форме (2.4а) напряжения ( /участков цепи включают в себя и падения напряжения участков, и имеющиеся на этих участках ЭДС.

§ 2.8. Составление уравнений для расчета токов в схемах с помощью законов Кирхгофа. Законы Кирхгофа используют для нахождения токов в ветвях схемы. Обозначим число всех ветвей схемы в, число ветвей, содержащих источники тока, - в. число узлов у. В каждой ветви схемы течет свой ток. Так как токи в ветвях с источниками тока известны, то число неизвестных токов равняется в - в.. Перед тем как составить уравнения, необходимо произвольно выбрать: а) положительные направления токов в ветвях и обозначить их на схеме; б) положительные направления обхода контуров для составления уравнений по второму закону Кирхгофа.

2* 35




с целью единообразия рекомендуетсу для всех контуров положительные направления обхода выбирать одинаковыми, например по часовой стрелке.

Чтобы получить линейно независимые уравнения, по первому закону Кирхгофа составляют уравнения, число которых равно числу узлов без единицы, т. е. - 1.

Уравнение для последнего у-го узла не составляют, так как оно совпало бы с уравнением, полученным при суммировании уже составленных уравнений для у - 1 узлов, поскольку в эту сумму входили бы дважды и с противоположными знаками токи ветвей, не подходящих к у-му узлу, а токи ветвей, подходящих к у-му узлу, входили бы в эту сумму со знаками, противоположными тем, с какими они вошли бы в уравнение для у-го узла.

По второму закону Кирхгофа составляют уравнения, число которых равно числу ветвей без источников тока {в - за вычетом уравнений, составленных по первому закону Кирхгофа, т. е. (в - - {у-) = в~в, - у+ \.

Составляя уравнения по второму закону Кирхгофа, следует охватить все ветви схемы, исключая лишь ветви с источниками тока.

Если попытаться составить уравнение по второму закону Кирхгофа в форме (2.4) для контура, в который входит источник тока, то в него вошли бы бесконечно большие слагаемые и оно не имело бы смысла.

При записи линейно независимых уравнений по второму закону Кирхгофа стремятся, чтобы в каждый новый контур, для которого составляют уравнение, входила хотя бы одна новая ветвь, не вошедшая в предыдущие контуры, для которых уже записаны уравнения по второму закону Кирхгофа. Такие контуры условимся называть независимыми.

Требование, чтобы в каждый новый контур входила хотя бы одна новая ветвь, является достаточным, но не необходимым условием, а потому его не всегда выполняют. В таких случаях часть уравнений по второму закону Кирхгофа составляют для контуров, все ветви которых уже вошли в предыдущие контуры.

Пример 10. Найти токи в ветвях схемы рис. 2.9, в которой Ei == 80 В, £2 = 64 В, = 6 Ом, /?2 = 4 Ом, /?з = 3 Ом, /?4 = 1 Ом.




Рис. 2.10

Решение. Произвольно выбираем положительные направления тока в ветвях. В схеме рис. 2.9, в = 3; б. = 0; = 2.

Следовательно, по первому закону Кирхгофа, можно составить только одно уравнение:

/,4-/2 = 3- (а)

Нетрудно убедиться, что для второго узла получили бы аналогичное уравнение. По второму закону Кирхгофа составим в - б. - (j/-1) = 3 - О - (2 - 1) = 2 уравнения. Положительные направления обхода контуров выбираем по часовой стрелке.

Для контуров 22

/l/?l-/2/?2=£l + £2- (б)

Знак плюс перед /взят потому, что направление тока совпадает с направлением обхода контура; знак минус перед I2R2- потому, что направление /2 встречно обходу контура.

Для контура £22з4

/22 +/3(3 + 4) = - 2- (в)

Совместное решение уравнений (а) - (в) дает /j = 14 А, /2 = - 15 А, /3 = - 1 А.

Поскольку положительные направления токов выбирают произвольно, в результате расчета какой-либо один или несколько токов могут оказаться отрицательными. В рассмотренном примере отрицательными оказались токи /2И/3, что следует понимать так: направления токов /2 и /3 не совпадают с направлениями, принятыми для них на рис. 2.9 за положительные, т. е. в действительности токи /2 и /3 проходят в обратном направлении.

Для выбора контура таким образом, чтобы в каждый из них входило по одной ветви, не входящей в остальные контуры, используют понятие дерева. Поддеревом понимают совокупность ветвей, касающихся всех узлов, но не образующих ни одного Замкнутого контура. Из одной и той же схемы можно образовать несколько деревьев. При составлении системы уравнений по второму закону Кирхгофа можно взять любое дерево из возможных. Одно из возможных деревьев схемы рис. 2.10, а изображено на рис. 2.10, б, а на рис. 2.10, в - четыре независимых контура, в каждый из которых входит по одной пунктиром показанной ветви, не входящей в остальные. Более подробно о топологии электрических схем см. § 2.31 - 2.35 и А.5 - А.10.

§ 2.9. Заземление одной точки схемы. Заземление любой точки схемы свидетельствует о том, что потенциал этой точки принят равным нулю. При этом токораспределение в схеме не изменяется, так как никаких новых ветвей, по которым могли бы протекать токи, не образуется. Иначе будет, если заземлить две или большее число точек схемы, имеющих различные потенциалы. В этом случае через



(0) (1) (2) (3) (4) (5) (6) (7) (8) ( 9 ) (10) (11) (12) (13) (14) (15) (16) (17) (18) (19) (20) (21) (22) (23) (24) (25) (26) (27) (28) (29) (30) (31) (32) (33) (34) (35) (36) (37) (38) (39) (40) (41) (42) (43) (44) (45) (46) (47) (48) (49) (50) (51) (52) (53) (54) (55) (56) (57) (58) (59) (60) (61) (62) (63) (64) (65) (66) (67) (68) (69) (70) (71) (72) (73) (74) (75) (76) (77) (78) (79) (80) (81) (82) (83) (84) (85) (86) (87) (88) (89) (90) (91) (92) (93) (94) (95) (96) (97) (98) (99) (100) (101) (102) (103) (104) (105) (106) (107) (108) (109) (110) (111) (112) (113) (114)