Главная -> Книги

(0) (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16) (17) (18) (19) (20) (21) (22) (23) (24) (25) (26) (27) (28) (29) (30) (31) (32) (33) (34) (35) (36) (37) (38) (39) (40) (41) (42) (43) (44) (45) (46) (47) (48) (49) (50) (51) (52) (53) (54) (55) (56) (57) ( 58 ) (59) (60) (61) (62) (63) (64) (65) (66) (67) (68) (69) (70) (71) (72) (73) (74) (75) (76) (77) (78) (58)

участок на характеристике мал и (или) почти плоский, то вместо автомодуляции возникает хаос.

Вопросы для самопроверки

1. Охарактеризуйте известные вам типы нелинейных резистивных, индуктивных и емкостных элементов. 2. Как понять выражение "нелинейные элементы являются генераторами высших гармоник тока (напряжения)"? 3. Какие преобразования можно осуществить с помощью нелинейных электрических цепей? 4. Какие физические явления могут наблюдаться в нелинейных и не могут в линейных цепях с постоянными параметрами? 5. Как из характеристик для мгновенных значений можно получить ВАХ для первых гармоник и ВАХ для действующих значений величин? 6. Проанализируйте зависимость индуктивного сопротивления для нелинейной индуктивной катушки от амплитуды приложенного напряжения при неизменной частоте ы. 7. Качественно начертите семейство ВАХ управляемой индуктивной катушки и управляемого нелинейного конденсатора и сопоставьте их. 8. Чем объяснить, что ВАХ управляемой нелинейной индуктивной катушки (см. рис. 15.14, б) имеют насыщение по напряжению, а ВАХ управляемого нелинейного конденсатора (см. рис. 15.14, в) - потоку? 9. Чем можно объяснить, что постоянная составляющая заряда Qo на нелинейном конденсаторе зависит от амплитуды первой гармоники заряда? 10. Начертите схемы замещения электронной лампы и биполярного и полевого транзисторов для малых переменных составляющих. 11. Охарактеризуйте основные положения известных вам методов расчета периодических процессов нелинейных цепей. 12. Сформулируйте условия нахождения моментов времени открытия изакрытия диодов. 13. Покажите, что для перемагничивания сердечника нелинейной индуктивной катушки от -ф, до под действием напряжения u{t) необходимо

выполнить условие 2ф,= [ w(/)d/, а для перезарядки нелинейного конденсатора от

-Qfn до под действием протекающего через него тока i{t) необходимо выпол-

нить условие 2,=/(/)d/, где ф - амплитуда потокосцепления; - заряд; -

время перемагничивания (перезарядки). 14. Что понимают под автоколебаниями? Как выявить условия, когда они возникают? 15. В чем причина возникновения субгармонических колебаний? 16. В чем причина возникновения автомодуляции? 17. В чем отличие субгармонических колебаний от автомодуляционных? 18. В чем принципиальное отличие феррорезонанса напряжений и токов от соответствующих резонансов в линейных цепях? 19. При каких условиях в электрических цепях могут возникать триггерные явления? 20. Возможны ли триггерные явления в схеме (см. рис. 15.42, а), если источником питания схемы будет уе источник ЭДС, а источник тока? 21. Можно ли ожидать возникновения триггерных явлений в схеме (см. рис. 15.44, а), если на входе ее будет источник ЭДС? 22. Что понимают под частотными характеристиками нелинейных цепей? 23. Чем принципиально отличаются частотные характеристики нелинейных цепей от частотных характеристик аналогичных линейных? 24. В чем сходство и в чем различие в построении векторных диаграмм по первым гармоникам для линейных и нелинейных цепей? 25. Дайте определение понятий "индуктивность рассеяния", "намагничивающий ток", "ток потерь". 26. Постройте векторную диаграмму трансформатора со стальным сердечником при активно-емкостной нагрузке. 27. Составьте алгоритм расчета нелинейной цепи с учетом первой и одной из высших гармоник. 28. К нелинейному резистору с симметричной характеристикой приложено периодическое напряжение без постоянной составляющей. Можно ли утверждать, что протекающий через него ток не может содержать постоянную составляющую? 29. Решите задачи 10.9; 10.10; 10.20; 10.23; 10.37; 10.38; 10.39; 10.41; 10.48; 10.58; 10.61.



Глава шестнадцатая

ПЕРЕХОДНЫЕ ПРОЦЕССЫ В НЕЛИНЕЙНЫХ ЭЛЕКТРИЧЕСКИХ ЦЕПЯХ

§ 16.1. Общая характеристика методов анализа и расчета переходных процессов. Методы анализа и расчета переходных процессов в нелинейных цепях могут быть классифицированы: а) по виду основных операций, которые необходимо выполнять для интегрирования нелинейных дифференциальных уравнений", - на графические (графоаналитические) и аналитические; б) по характеру величины, для которой производится расчет (по мгновенным значениям токов и напряжений), по мгновенным значениям огибающих токов и напряжений (их первых гармоник) либо по мгновенным значениям медленно меняющихся средних за период внешнего воздействия значений.

Под графическими (графоаналитическими) понимают такие методы, в которых основными операциями при определении зависимости от времени искомых токов и напряжений являются графические построения, нередко сопровождаемые и некоторыми вспомогательными числовыми подсчетами.

В графических методах характеристики нелинейных элементов обычно не требуется выражать аналитически (см. § 16.2).

Аналитическими называют такие методы, в которых основной операцией при определении зависимости искомых токов и напряжений от времени является точное (приближенное) аналитическое интегрирование дифференциальных уравнений цепи путем использования аналитических выражений характеристик нелинейных элементов.

Рассмотрены следующие аналитические методы: 1) метод интегрируемой нелинейной аппроксимации (см. § 16.3); 2) метод кусочно-линейной аппроксимации (см. § 16.4); 3) метод медленно меняющихся амплитуд (см. § 16.6); 4) метод малого параметра (см. § 16.7); 5) метод интегральных уравнений (см. § 16.8).

Графические методы имеют следующие преимущества перед аналитическими: а) нет необходимости выражать характеристики нелинейных элементов аналитически, что позволяет избавиться от погрешностей, связанных с аналитическим представлением характеристик; б) простота учета гистерезиса и других сложных нелинейных зависимостей.

В СВОИ) «.чередь, аналитические методы также имеют перед графическими преимущества. Из них основным является то, что они дают возможность получить решение в общем виде, а не для какого-то одного конкретного сочетания параметров. Получить решение в общем виде желательно потому, что анализ его позволяет выяснить все особенности процесса при изменении всех параметров.

Как упоминалось, все методы расчета могут быть подразделены




Рис. 16.1

на две подгруппы: 1) расчет по мгновенным значениям токов и напряжений; 2) расчет по мгновенным значениям огибающих токов и напряжений.

Расчет по огибающим важен, потому что он дает возможность, не вдаваясь в мелкие детали процесса внутри каждого периода действующей в схеме периодической ЭДС (внутри каждого периода автоколебаний в автоколебательной системе), судить о макроструктуре процесса. Он возможен не только для нелинейных цепей, он представляет существенный интерес и для линейных цепей.

Точность расчета по огибающим уступает точности расчета по мгновенным значениям. Однако возможность судить о макроструктуре процесса часто является решающим фактором.

Там, где это необходимо, целесообразно дополнять расчет по огибающим расчетам по мгновенным значениям. Метод расчета по огибающим представлен методом медленно меняющихся амплитуд (см. § 16.6). Остальные методы относятся к подгруппе расчета по мгновенным значениям.

Теория переходных процессов в электрических цепях с управляемыми нелинейными индуктивными, емкостными и резистивными элементами, а также в электромеханических системах и цепях с управляемыми источниками с учетом их нелинейных и частотных свойств рассмотрена в § 16.9 - 16.12.

§ 16.2. Расчет, основанный на графическом подсчете определенного интеграла. Метод применим к нелинейным электрическим цепям, описываемым дифференциальными уравнениями первого порядка, допускающим разделение переменных. Последняя оговорка свидетельствует о том, что метод применим к цепям постоянного и, как правило, неприменим к цепям переменного тока. Основные этапы и последовательность расчета проиллюстрируем на примере.

Нелинейный конденсатор через резистор подключается к источнику напряжения и (рис. 16.1, а). Кулон-вольтная характеристика (КВХ) конденсатора задана графически (рис. 16.1, б). Полагая, что в схеме нулевые начальные условия, построить кривые изменения заряда q, напряжения на конденсаторе ис и тока i в функции времени. Составим дифференциальное уравнение:



(0) (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16) (17) (18) (19) (20) (21) (22) (23) (24) (25) (26) (27) (28) (29) (30) (31) (32) (33) (34) (35) (36) (37) (38) (39) (40) (41) (42) (43) (44) (45) (46) (47) (48) (49) (50) (51) (52) (53) (54) (55) (56) (57) ( 58 ) (59) (60) (61) (62) (63) (64) (65) (66) (67) (68) (69) (70) (71) (72) (73) (74) (75) (76) (77) (78)