Главная -> Книги

(0) (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16) (17) ( 18 ) (19) (20) (21) (22) (23) (24) (25) (26) (27) (28) (29) (30) (31) (32) (33) (34) (35) (36) (37) (38) (39) (40) (41) (42) (43) (44) (45) (46) (47) (48) (49) (50) (51) (52) (53) (54) (55) (56) (57) (58) (59) (60) (61) (62) (63) (64) (65) (66) (67) (68) (69) (70) (71) (72) (73) (74) (75) (76) (77) (78) (79) (80) (81) (82) (83) (84) (85) (86) (87) (88) (89) (90) (91) (92) (93) (94) (95) (96) (97) (98) (99) (100) (101) (102) (103) (104) (105) (106) (107) (108) (109) (110) (18)

Рассмотрим ситуацию, когда транзистор переводится в состояние насыщения прямоугольным импульсом с идеальным фронтом. Ток коллектора, однако, достигает установившегося значения не сразу после подачи тока в базу-имеется некоторое время задержки t, спустя которое появится ток в коллекторе. Затем ток коллектора плавно нарастает и после истечения времени /„ достигает установившегося значения.

вкл ~ had ~ t„ap ,

где - время включения транзистора.

При выключении транзистора на его базу подается отрицательное напряжение, в результате чего ток базы меняет свое направление и становится равным i". Пока происходит рассасывание неосновных носителей заряда в базе, ток не меняет своего значения. Это время называется временем рассасывания t. После окончания процесса рассасывания происходит спад тока базы, который продолжается в течение времени t.„.

вык 1-рас ten ,

где W - время выключения транзистора. .

Внимание! В течение времени t транзистор остается открытым и коллекторный ток не меняет своего значения. Спад тока коллектора начинается одновременно со спадом тока базы, и заканчиваются они почти одновременно. Графики описанных временных процессов коммутации транзистора изображены на рис. 4.6.

Как уже было сказано, время рассасывания сильно зависит от степени насыщения транзистора. Минимальное время выключения получается при пограничном режиме насыщения. Для ускорения рассасывания в базу иногда подают обратный закрывающий ток. Однако прикладывать к базе большое обратное напряжение опасно, так как может произойти пробой перехода «база-эмиттер». Максимальное обратное напряжение на базе указывается в справочниках и обычно не превышает 5...6 В.

Если к базе транзистора в процессе запирания не прикладывать обратное напряжение, а просто замыкать базу на эмиттер, такое запирание носит название пассивного. Конечно, при пассивном запирании время рассасывания увеличивается, но с этим мирятся, поскольку этот




Рис. 4.6. Временные диаграммы коммутационных процессов в транзиторе

режим не требует для своей реализации дополнительных элементов, а потому широко используется в импульсной силовой схемотехнике.

В справочных данных обычно приводят времена включения, спада и рассасывания в пограничном режиме при пассивном запирании. Для наиболее быстрых силовых транзисторов время рассасывания составляет 0,1...0,5 мкс.

Коммутационные процессы в транзисторе определяют динамические потери при его переключении. Слишком большие активные потери могут перегреть транзистор, и он пробьется. Поэтому очень важно уметь прогнозировать тепловой режим транзистора. Мы подробно разберем расчет теплового режима работы транзисторов далее, а сейчас покажем, как можно определить коммутационные параметры транзистора, зная граничную частоту его работы и коэффициент насыщения;

1 . Яиас .

х = -

рас =11П---

Данные формулы приведены для режима пассивного запирания.



4.2. Параллельное включение транзисторов

в мощных импульсных источниках питания, в ключевых цепях бывает необходимо иметь токи, которые непосильны для одиночных транзисторов, широко используется параллельное включение транзисторов. В этом случае общий ток распределяется между отдельными транзисторами. Особенность биполярных транзисторов, о которой надо знать даже радиолюбителю, это невозможность непосредственного параллельного соединения их электродов. Необходимо обязательно включать в эмиттерные цепи транзисторов небольшие резисторы, выравнивающие токи. Зачем это делается, разберем на примере.

Предположим, что мы имеем параллельное соединение двух транзисторов - VT1 и VT2. Эквивалентная схема этого соединения показана на рис. 4.7.

Emin

Ннас

Emax

Рис. 4.7. Эквивалентная схема параллельного включения транзисторов

Пусть один транзистор имеет минимально возможный параметр min = 0,1 В, а второй - максимально возможный = 0,5 В. Сопротивления транзисторов в открытом состоянии считаем примерно одинаковыми. Напряжение U обычно не слишком отличается от напряжения Е в состоянии насыщения. Тогда ток через VT2 будет примерно в 5 раз больше, чем ток через транзистор VT1. Другими словами, мощность, рассеиваемая на VT2, будет в 25 (!) раз больше, чем мощность, рассеиваемая на VT1. Ключ может мгновенно выйти из строя, если мы планировали распределить токи между ключами равномерно.

Чтобы избежать теплового пробоя по причине разбаланса токов, необходимо введение токовыравнивающих резисторов, пока-



(0) (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16) (17) ( 18 ) (19) (20) (21) (22) (23) (24) (25) (26) (27) (28) (29) (30) (31) (32) (33) (34) (35) (36) (37) (38) (39) (40) (41) (42) (43) (44) (45) (46) (47) (48) (49) (50) (51) (52) (53) (54) (55) (56) (57) (58) (59) (60) (61) (62) (63) (64) (65) (66) (67) (68) (69) (70) (71) (72) (73) (74) (75) (76) (77) (78) (79) (80) (81) (82) (83) (84) (85) (86) (87) (88) (89) (90) (91) (92) (93) (94) (95) (96) (97) (98) (99) (100) (101) (102) (103) (104) (105) (106) (107) (108) (109) (110)