Главная -> Книги

(0) (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16) (17) (18) (19) (20) ( 21 ) (22) (23) (24) (25) (26) (27) (28) (29) (30) (31) (32) (33) (34) (35) (36) (37) (38) (39) (40) (41) (42) (43) (44) (45) (46) (47) (48) (49) (50) (51) (52) (53) (54) (55) (56) (57) (58) (59) (60) (61) (62) (63) (64) (65) (66) (67) (68) (69) (70) (71) (72) (73) (74) (75) (76) (77) (78) (79) (80) (81) (82) (83) (84) (85) (86) (87) (88) (89) (90) (91) (92) (93) (94) (95) (96) (97) (98) (99) (100) (101) (102) (103) (104) (105) (106) (107) (108) (109) (110) (21)

способности. Можно включать параллельно достаточно большое число MOSFEToB без выравнивающих резисторов в силовых цепях и при . этом не опасаться рассимметрирования токов, что, как мы знаем, очень опасно для биполярных транзисторов. Однако параллельное соединение полевых транзисторов тоже имеет свои особенности, и об этом мы поговорим чуть позже.

Последнее преимущество полевого транзистора связано с его тепловыми свойствами - полное отсутствие вторичного пробоя. Это преимущество позволяет эффективнее использовать полевой транзистор по передаваемой мощности. На рис. 5.2 обозначены области безопасной работы мощного биполярного и полевого транзисторов, максимальные токи и напряжения которых выбраны примерно одинаковыми.

участок вторичного пробоя биполярного транзистора

.max jmax

линии теплового ограничения


проб проб и

Рис. 5.2. Сравнительная характеристика областей безопасной работы полевого и биполярного транзисторов

Не следует думать, что полевой транзистор является идеальным ключевым прибором. Это далеко не так. Правильное применение полевых транзисторов имеет свои особенности, свои «подводные камни», которые разработчик обязан хорошо знать.

Во-первых, полевой транзистор в открытом состоянии имеет, пусть небольшое, но все же активное сопротивление. Это сопротивление мало только у транзисторов с допустимым напряжением «сток-исток» не более 250-300 В, то есть составляет десятки милли-ом. Далее, с повышением допустимого напряжения «сток-исток», наблюдается значительный рост сопротивления в открытом состоянии. Это обстоятельство заставляет разработчика соединять приборы параллельно, ограничивать мощность, приходящуюся на один транзи-



стор, то есть работать «с недогрузкой», тщательно прорабатывать тепловой режим.

Второй недостаток полевого транзистора связан с технологией его изготовления. До настоящего времени технологически не удается изготовить мощный полевой транзистор без некоторых паразитных элементов, одним из которых является паразитный биполярный транзистор, который показан на рис. 5.3.

Рис. 5.3. Паразитные элементы в составе полевого транзистора

В 1997 году фирма International Rectifier предприняла попытку исключить влияние паразитного элемента посредством управления его свойствами на стадии изготовления. Фирме удалось создать приборы, которые почти не чувствуют наличие паразитных эффектов, но допустимое напряжение «сток-истою> у разработанных транзисторов пока не превышает 100 В. Надеемся, что стремительное развитие силовой элементной базы в ближайшее время изменит ситуацию.

Итак, паразитный биполярный транзистор оказывается включенным параллельно силовым электродам полезного полевого транзистора. База биполярного транзистора подключена к технологическому основанию, на котором расположен р-п переход (называется это основание подложкой). Между подложкой и истоком есть некоторое омическое сопротивление R , между подложкой и стоком - паразитный конденсатор С*. Емкость этого конденсатора, к счастью, невелика. Для включения паразитного транзистора может оказаться достаточным быстрый спад или рост напряжения «сток-истою>, например, при коммутации токов большой величины. Чем это грозит для транзистора? В тот момент, когда мы считаем транзистор закрытым, он вновь открывается, что легко может вывести схему из строя.



Для обеспечения нормальной работы полевого транзистора необходимо исключить паразитный транзистор. Подключив на стадии изготовления технологической проводящей перемычкой подложку к истоку, мы значительно ослабим влияние этого элемента. Данная связь отражена в условном обозначении MOSFET стрелочкой. Таким простым методом гарантированно исключается опасность неконтролируемого поведения паразитного элемента.

К сожалению, вред от наличия паразитного элемента полностью исключить не удается, и вот почему. Давайте вспомним модель биполярного транзистора, состоящую из двух диодов. В результате подключения подложки к истоку в транзисторе появляется паразитный антипараллельный диод VD, образованный переходом «база-эмиттер». Параметры этого диода производители элементной базы стремятся контролировать, однако подавляющее большинство выпускаемых на сегодняшний день полевых транзисторов имеют диоды с достаточно большим временем обратного восстановления. Про существование антипараллельного диода можно забыть, когда разрабатывается источник на базе так называемой однотактной схемы. Однако не учитывать влияние диода в двухтактных схемах нельзя. Позже мы разберем этот вопрос.

5.2. Паразитные емкости и их влияние

с большой долей уверенности можно сказать, что у читателя сложилось мнение о полевом транзисторе как о безынерционном приборе, который может переключаться практически мгновенно, - только включил напряжение на затворе, и транзистор уже открыт! В действительности полевой транзистор затрачивает некоторое время п& включение, а также на выключение (хотя это время значительно меньше, чем у биполярного транзистора). В данном случае существование задержки обусловлено наличием паразитных емкостей. На рисунке 5.4 эти емкости условно показаны постоянными, чтобы не запутать читателя, когда речь пойдет о процессах переключения. На самом деле каждая емкость состоит из нескольких более мелких, с разным характером поведения. Кроме того, все эти емкости сильно зависят от напряжения между их «обкладками»: они велики при малых напряжениях и быстро уменьшаются при больших.



(0) (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16) (17) (18) (19) (20) ( 21 ) (22) (23) (24) (25) (26) (27) (28) (29) (30) (31) (32) (33) (34) (35) (36) (37) (38) (39) (40) (41) (42) (43) (44) (45) (46) (47) (48) (49) (50) (51) (52) (53) (54) (55) (56) (57) (58) (59) (60) (61) (62) (63) (64) (65) (66) (67) (68) (69) (70) (71) (72) (73) (74) (75) (76) (77) (78) (79) (80) (81) (82) (83) (84) (85) (86) (87) (88) (89) (90) (91) (92) (93) (94) (95) (96) (97) (98) (99) (100) (101) (102) (103) (104) (105) (106) (107) (108) (109) (110)