Главная -> Книги

(0) (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16) (17) (18) (19) (20) (21) (22) (23) (24) (25) (26) (27) (28) (29) (30) (31) (32) (33) (34) (35) (36) (37) (38) (39) (40) (41) (42) (43) (44) (45) (46) (47) (48) (49) (50) (51) (52) (53) (54) (55) (56) (57) (58) (59) (60) (61) (62) (63) (64) (65) (66) (67) (68) (69) (70) (71) (72) (73) (74) (75) (76) (77) (78) (79) (80) (81) (82) (83) ( 84 ) (85) (86) (87) (88) (89) (90) (91) (92) (93) (94) (95) (96) (97) (98) (99) (100) (101) (102) (103) (104) (105) (106) (107) (108) (109) (110) (84)

коем случае нельзя допускать, чтобы преобразователь работал с у = 0,5. Типичное значение у не должно превышать 0,4...0,45. Все дело в том, что используемые элементы не могут обладать идеальными свойствами. Как нам известно, первичная обмотка обладает ограниченной индуктивностью L, которая накапливает энергию:

L..i

Максимальный ток i , показанный на графике (рис. 14.7), опреде-

ляется из соотношения:

При размыкании Кл1 накопленная в магнитопроводе энергия стремится поддержать ток. Если бы в схеме не бьшо защитного диода VDpj, показанного на рис. 14.6, на Кл2 возник бы бросок отрицательного напряжения. Способность биполярных транзисторов выдерживать отрицательные броски напряжения невелика (единицы вольт), поэтому разрядный ток необходимо замкнуть через диод VDpj. Диод практически «накоротко» замыкает обмотку w, 2 и быстро разряжает (рис. 14.8). При разряде выделяется тепловая энергия, учесть которую можно через следующее соотношение:

21 f


- г Un 2 Wdpi кп1 2\уор2

Рис. 14.6. К пояснению коммутационных процессов в реальной схеме пуш-пульного преобразователя

Рис. 14.7. Определение тока намагничения



-±- Un

/КЛ2

Рис. 14.8. Разряд индуктивности намагничения

При работе пуш-пульного преобразователя разрядные диоды включаются попеременно. Следует таюке помнить, что в составе транзисторов MOSFET, а также некоторых транзисторов IGBT эти диоды уже есть, поэтому вводить дополнительные элементы нет необходимости.

Вторая неприятность связана с конечным временем восстановления диодов выпрямителя. Представим, что в начальный момент времени диод VD1 проводит ток. Направления действия ЭДС показаны на схеме «а» (рис. 14.9).

Рис. 14.9. Пояснение влияния конечного времени восстановления вьтрямите.т1ьных диодов

При вютючегши транзистора VT1 ЭДС меняет направление (схема «б»), открывается диод VD2. Но в то же время диод VD1 не может мгновенно закрыться. Поэтому вторичная обмотка оказывается зако-



роченной диодной парой VD1-VD2, что вызывает броски тока в ключевом элементе (это хорошо видно на эквивалентной схеме трансформатора). Форма тока первичной обмотки на совмещенном графике при у = 0,5 будет такой, как изображено на рис. 14.10.

Идеальные диоды VD1 и VD2

Диоды VD1 и VD2 с ограниченным временем обратного восстановления

Рис. 14.10. Характер тока обмоток трансформатора в случае наличия идеальных и реальных выпрямительных диодов

Во избежание коммутационных выбросов необходимо, во-первых, вводить паузу между закрытием Кл1 и открытием Кл2 на время не менее чем удвоенное время обратного восстановления диода t. Во-вторых, если есть возможность, лучше отказаться от обычных диодов и применить диоды Шоттки.

Напряжение на закрытом ключевом транзисторе складывается из напряжения питания f/„ и ЭДС первичной полуобмотки, которая в данный момент разомкнута. Поскольку коэффициент трансформации этих обмоток равен 1 (обмотки с одинаковым числом витков), перенапряжение на ключевом транзисторе достигает 2[/„. Поэтому, выбирая транзистор, следует обратить внимание на допустимое напряжение между его силовыми электродами. Необходимо также учитывать, что ток ключевого транзистора складывается из постоянного тока нагрузки, пересчитанного в первичную цепь, и линейно нарастающего тока намагничения индуктивности первичной обмотки. Ток имеет трапецеидальную форму.



(0) (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16) (17) (18) (19) (20) (21) (22) (23) (24) (25) (26) (27) (28) (29) (30) (31) (32) (33) (34) (35) (36) (37) (38) (39) (40) (41) (42) (43) (44) (45) (46) (47) (48) (49) (50) (51) (52) (53) (54) (55) (56) (57) (58) (59) (60) (61) (62) (63) (64) (65) (66) (67) (68) (69) (70) (71) (72) (73) (74) (75) (76) (77) (78) (79) (80) (81) (82) (83) ( 84 ) (85) (86) (87) (88) (89) (90) (91) (92) (93) (94) (95) (96) (97) (98) (99) (100) (101) (102) (103) (104) (105) (106) (107) (108) (109) (110)